L»~-MAPPING PROPERTIES FOR SCHRODINGER OPERATORS
IN OPEN SETS OF R?

TSUKASA IWABUCHI, TOKIO MATSUYAMA AND KOICHI TANIGUCHI

ABSTRACT. Let Hy = —A+V be a Schrodinger operator on an arbitrary open set
Q C R? (d > 3), where A is the Dirichlet Laplacian and the potential V' belongs to
the Kato class on 2. The purpose of this paper is to show LP—boundedness of an
operator ¢(Hy ) for any rapidly decreasing function ¢ on R. ¢(Hy ) is defined by
the spectral resolution theorem. As a by-product, LP—L%-estimates for ¢(Hy ) are
also obtained.

1. INTRODUCTION AND MAIN RESULT

Let Q C R? (d > 3) be an arbitrary open set. We consider the Schrodinger operator
Hy = H + V(z), where
4 2

- 2
j=1 ax]'

H.=-A=

is the Dirichlet Laplacian with domain
D(H) = {u € Hy(Q) | Au e L*(Q)}

and V(x) is a real-valued measurable function on Q. If we impose an appropriate
assumption on V(z), Hy will be a self-adjoint operator on L*(Q). Let {Ex, (A)}aer
be the spectral resolution of the identity for Hy. Then Hy is written as

Hy - / NdEn, (V).

o0

Hence we can define p(Hy ) by

pl) = [ o3 dEu, (V)
for a Borel measurable function p(A) on R. These operators are initially defined on
L?(2). This paper is devoted to investigation of functional calculus for Schrodinger
operators on 2. More precisely, our purpose is to prove that ¢(Hy) is extended
uniquely to a bounded linear operator on LP(Q2) for 1 < p < oo and that LP-
boundedness of ¢(0Hy ) is uniform with respect to a parameter 6 > 0.

When Q = R? Simon considered the Kato class K, of potentials to reveal LP—
mapping properties of the Schrodinger operators Hy and e v for ¢ > 0 (see [9,
Section A.2]). We now define a Kato class K4(Q2) on an open set € as follows: We
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say that a real-valued measurable function V' on Q belongs to the class K;(€) if and

only if
lim Sup/ % dy = 0.
Q

70 260 Jon{la—yl<r} |T — Y
Throughout this paper, defining the “Kato norm”:
V()|
Vlk.io ::sup/—dy,
1Vl kae) e Jo | — y|2

we impose an assumption on V' as follows:

Assumption A. Let d > 3. A real-valued measurable function V(x) on Q is decom-
posed into V=V, —V_ Vi >0, belongs to K4() and satisfies
(1.1) IV-llkae) < as
where g4 15 the constant given by
/2

T a2 — 1)
Here I'(s) is the Gamma function for s > 0.

If the potential V' is satisfied with assumption A, it will be proved in Proposition
P70 that Hy is the non-negative and self-adjoint operator on L?(Q) (see §2). For a
Borel measurable function ¢ on R, we define the operator p(Hy ) on L*(€) as follows:

D(e(Hy) = {£ € @) | [ 1o0F dlBay WF. )10 < o0,

<90(HV)fag>L2(Q) = /0 (/\) d<EHv( )fv g>L2(Q)7 Vf < D(QO(H‘/))? v.g S LQ(Q)a

where (-, ) ;2(q, stands for the inner product in L?(2). Formally we write

(1.2) o(Hy) = / " o NdEm, ().

Denoting by . (R) the space of rapidly decreasing functions on R, we shall prove
here the following:

Theorem 1.1. Let d > 3, p € L(R) and 1 < p < co. Assume that the measurable
potential V' satisfies assumption A. Then there exists a constant C' = C(d,p,p) > 0
such that

(1.3) le(OHv )| #(1e ) < C
for any 6 > 0.

Let us give a few remarks on Theorem 1. We have restricted the result in this
theorem to high space dimensions. So, one would expect the result to hold also
for low space dimensions, i.e., d = 1,2. But in the present paper, we will use the
pointwise estimates for kernel of e=*#v on R¢ that D’Ancona and Pierfelice proved
for d > 3 (see [?]). Hence low dimensional cases will be a future problem. When
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V =0, Theorem [T also holds in the cases d = 1,2 by using the pointwise estimates
for classical heat kernel of e®.

One can easily see that ¢(Hy ) is bounded on L%*(Q) via direct application of the
spectral resolution (I2). From the point of view of harmonic analysis, it would be
important to obtain LP-boundedness (p # 2). For instance, Theorem I provides a
generalization of LP~boundedness for the Fourier multiplier in R?:

1771201 ) Mo < Coll lr@y. 96 >0

where ¢ € (RY), " denotes the Fourier transform, and .# ! is the Fourier inverse
transform. LP—boundedness of (0 Hy ) also plays a fundamental role in defining the
Besov spaces associated with spectral resolution of Hy (see, e.g., [2, @, 6]). Thus
Theorem 1 would be a starting point of the study of spectral multiplier and Besov
spaces on open sets.

When Q = R? there are some known results on uniform LP-estimates for o(6Hy )
with respect to 6. For 0 < # < 1, Jensen and Nakamura proved the uniform estimates
for d > 1, under the assumption that the potential V' =V, — V_  V, > 0, satisfies
Vi € K and V_ € Ky (see [B, []). Here K¢ is the local Kato class, which is the
space of all f € L _(R?) such that f belongs to the Kato class on any compact set
in R?. For # > 0, Georgiev and Visciglia proved the uniform estimates under the
assumption that the potential V satisfies 0 < V(z) < W (C > 0,e > 0)
in dimension d = 3 (see [@]). D’Ancona and Pierfelice proved the uniform estimates
for d > 3, under the assumption that the potential V' =V, — V_ V. > 0, satisfies
Vi € Ky and ||V_||k, < va (see [2]). As far as we know, Theorem [T is new in the
sense that there would not be no results on LP—estimates for ¢(Hy ) in open sets.

Let us overview the strategy of proof of Theorem Il. For the sake of simplicity,
we consider the case V = 0, since the case V' # 0 is similar. The original idea of
proof of LP-boundedness goes back to Jensen and Nakamura [[d]. The method for
the boundedness of p(—A) is to use the amalgam spaces ¢(L?), pointwise estimates
for the kernel of e7** and the commutator estimates for —A and polynomials. As to
the uniformity of the boundedness of ¢(—0A) with respect to 6 (see [2, @, G]), the
estimates on the operator ¢o(—#A) are reduced to those on ¢(—A) via the following
equality

(L4)  (p(=08)f) (@) = (9(=2) (f012) )07 %), weR:, 60,

There, scaling invariance of R?, ie., R* = §/2R? plays an essential role in the
argument. On the other hand, when one tries to get (I) on open sets € ; R,
the scaling invariance breaks down, i.e., Q # 6/2Q. To avoid this problem, we shall
introduce the scaled amalgam spaces ¢P(L7)y()) to estimate the operator norm of
©(—0OA) directly. A scale exponent 1/2 in §/2 of the spaces (?(L?)y(Q2) is chosen to
fit the scale exponent of the operator p(—0A); thus we define the scaled amalgam
spaces as follows:
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Definition 1.2 (Scaled amalgam spaces P(L%)g). Let 1 < p,q < oo and 6 > 0. The
space (P(L%)y is defined as

(L) = 2(1(92) = { € L @) 32 11Ky < 0}

nezZd

1/p
I loczrs = (30 1 Kacumy)

n€ezd
where Cp(n) is the cube centered at 6'/2n € §'/2Z% with side length §'/%,

with norm

1/2

Cy(n) = {x € Q| max |z - 0'/%n;| < 97}

Here we adopt the Euclidean norm for n = (ny,na, ..., ng) € Z4;

\n\:\/n§+n§+-~+n§.

It can be checked that #(L%)y is a Banach space with norm || - ||gp(ze), having the
property that
P(LYy — LP(Q) N LYQ)
for 1 <p<gq<oo.

To prove Theorem [, we also prepare the pointwise estimate for the kernel of '
and the commutator estimates for our problem in an open set 2 of R%. The pointwise
estimate on e*® is obtained by estimating the solution of linear heat equation in
from above by that in the whole space R?. For the commutator estimates, we utilize
the explicit formula of the commutator to estimate optimally with respect to 6.

This paper is organized as follows. In §2 the self-adjointness of Schrodinger operator
Hy will be shown. In §3 we will prove LP—L%estimates for e *#v and the pointwise
estimates for integral kernel of e *v. In §4 LP—P(L%)s—estimates for some power of
resolvent of Hy will be proved. In §5 several commutator estimates for operators
will be derived. In §6 the proof of Theorem I will be given. As a by-product of
Theorem [, LP—L9-boundedness for p(Hy ) will be proved in §7.

2. SELF-ADJOINTNESS OF SCHRODINGER OPERATORS

In this section we show that operator Hy is self-adjoint and non-negative under
assumption A. When Q = R? D’Ancona and Pierfelice had already proved these
facts (see [2]). Hereafter we W111 often use the absolute constant 74 in (I):

B /2
T T2 —1)
Our purpose is to prove the following.

Proposition 2.1. Letd > 3. Assume that the measurable potential V is a real-valued
function on Q and satisfies V =V, —V_, Vi >0 such that Vi € K4(£) and

V-l ku@) < 474
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Let Hy be the operator with domain D(Hy) = {u € H}(Q)| Hyu € L*(Q)}, so that

(2.1) <Hvu,v>L2(Q) :/QVu(x).Vv(m) dx+/ﬂV(x)u(x)@dx

for any u € D(Hy) and v € H}(2). Then Hy is non-negative and self-adjoint on
L3(9).

We need a notion of quadratic forms on Hilbert spaces (see p.276 in Reed and
Simon [8]).

Definition 2.2. Let % be a Hilbert space with the norm || - ||. A quadratic form
is amap ¢ : Q(q) x Q(q) — C, where Q(q) is a dense linear subset in . called the
form domain, such that ¢(-,v) is conjugate linear and ¢(u, -) is linear for u,v € Q(q).
We say that ¢ is symmetric if ¢(u,v) = q(v,u). A symmetric quadratic form ¢ is
non-negative if ¢(u,u) > 0 for any v € Q(g). A non-negative quadratic form ¢ is
closed if Q(q) is complete with respect to the norm:

(2.2) ull41 = Va(u, u) + [Jul]>.

The proof of Proposition 211 can be done by using the following two lemmas.

Lemma 2.3. Let 5 be a Hilbert space with the inner product (-,-), and let q :
Q(q) x Q(q) — C be a densely defined semibounded closed quadratic form. Then
there exists a self-adjoint operator T on € uniquely such that

D(T) ={u € Q(q) | Fw, € H such that q(u,v) = (w,,v), Yv € Q(q)},
Tu=w,, uecD).

We note that D(T') can be simply written as
D(T)={uec Qq)|Tue H}.
For the proof of Lemma 223, see [8, Theorem VIII.15].

The following lemma states that V. are relatively form bounded with respect to
—A.

Lemma 2.4. Let V. and V_ be as in Proposition 2. Then for any e > 0, there
exists a constant b. > 0 such that the following estimates hold:

(2.3) / V(@) (o) di < 2oy + bl

(2.4) / V(@) u(@)]? dr < agl| V20,

for any u € H&(&Z), where
V_
Aq = —H ”Kd(ﬂ) <

1.
4q
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Proof. The proof is similar to that of Lemma 3.1 from [2]. Let u € C§°(£2), and let @
and V. be the zero extensions of u and V4 to RY, respectively. First, we prove that
for any € > 0, there exists a constant b. > 0 such that

(2.5) /Rd Vi (@)[a(z)|* do < e|| V|72 gy + bell @] 72 gay-

We divide the proof of (Z3) into two cases: d = 3 and d > 3. When d = 3, the
inequality (Z3) is equivalent to

/R V()i dr <o A} + b il

b\ M2 2
(Ho + —E) U
€

12(R?)
where Hy = —A is the self-adjoint operator with domain H?*(R?). Put

o\ /2
v = (HQ + —E> 12
£

Then the estimate (223) takes the following form:

. b\ 12 2
V+1/2 (H0+§> v

L2(R?)

=& N

< el[v]|Z2 gs)-

This estimate can be obtained if we show that
(2.6) ||TT*||,@(L2(R3)) S g,

where we set

B ba —1/2
T .= V_i/Q (H() + ;) .

Thus, it suffices to show that for any € > 0, there exists a constant b. > 0 such that
the estimate (Z8) holds. Let € > 0 be fixed and b > 0. Using the formula:

(Ho+g>_1v(x) ! /Rgﬂv(y)dy

T dn
and Schwarz inequality, we can estimate

||TT*U||%2(1R3)

2
. b\ ! -
_ ||y (H0+g) 712y

L2(R3)
1 ~
= (471')2 /]R3 V+<:C>

e—ﬂlm—yl N
[ S ) dy
1 ~ e~ Velz—yl _ VAL ,
§<47T)2 /]R3 Vi(x) (/RS WV+(:{/) dy) (/Rs Wh}(y)\ dy) dz.

2
dx

lz—yl F




LP-MAPPING PROPERTIES FOR SCHRODINGER OPERATORS IN OPEN SETS OF R? 7

Now, we estimate the first integral on the right. We split the integral as follows:

eV Ela- y\
Lo von=] )
R3 |IL’ - y| lz—y|<r |z—y|>r

=L+

for any » > 0. Let § > 0 be fixed. Then, if we choose r > 0 small enough, we have
I; <6, since V. € K%Q). Then, choosing b = bs > 0 large enough, we have I, < 6.
Thus we obtain

(2.7) /RS ﬂf@(y) dy < 26.

[z — y|

Using this estimate, we can estimate

20 ~ e~V Ha=yl
TT* 0|2 ms) < V. — *dy | du.
ITT 0l < 7o [ Vol@) (/ )Py ) o

Moreover, using Fubini-Tonnelli theorem and the estimate (2-4) once more, we can

estimate
TT* < 20 e Vil y|v d 24
T ol <o [ ([, oo Vel de ) o) P

(% .
=\ 1r ||U||L2(R3)-

Thus, by choosing § = 27e, we get (Z8), which implies (Z3) for d = 3.
When d > 3, we can also prove the estimate (223) in the same argument as in the
case when d = 3, if we note that the kernel Ky/(z) of (—A+ M)~! for M > 0 satisfies

1
|KM (LE)| 4/}/d| |d—2 and M].lm |Sx1|l>pr € KM( ) 0

for each r > 0 (see [9, p.454]). Indeed, we can perform the argument involving Hy+ bf
by using the previous asymptotics, and as a result, we get also (E33).

Based on (24), we can prove the required estimates (223). In fact, we can estimate,
by using (23),

/V+(x)|u(:v)|2dx:/ Vo (z)|a(z)|? do
Q R4
< el Vil ey + belll 72 ga)

= & VullL2) + bellullZz )

As a consequence, by density argument, the inequality (2=3) is proved. The proof of
(22) is almost identical to that of (223). The only difference is the estimate (272).
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Instead of (E20), we can apply the following estimate:
; -
6—\/;|r—y| - V_(y
/ —V—(y)dyé/ ) dy
g |7 =yl w |7 =y
<IV-ll ks @)
=IV-llks9);

whence the argument in (223) works well in this case, and we get (24). The proof of
Lemma 274 is complete. O

We are now in a position to prove Proposition 2.

Proof of Proposition 2. Let the quadratic form ¢ : Hj(Q2) x H}(2) — C be
q(u,v) = /(Vu Yo+ Vuv)dz, u,v € Hy(Q).
Q

It is clear that ¢ is densely defined and semibounded. Hence, as a consequence of
Lemma 23, it suffices to show that the quadratic form ¢ is closed. Hence all we have
to do is to show that the norm || - ||.; is equivalent to that of Hg (), where || - |41 is
defined in (22), i.e.,

lullr = yfalu,w) + lul32 0
In fact, by Lemma 24 and 0 < a4 < 1, we have
lull3s < IVulZz) +/QV(93)IU($)|26533+ ullZ2(q)

< C(IVullza) + ullZz).

lullfs = IVullza@) — /QV(SC)\U(IJ)Ide+ lullZ2(0)
> (1= ag)[|Vul|Za) + llull72q
for any u € Hj(€2), which implies that || - |41 is equivalent to || - || g1(q). The proof of
Proposition P71 is complete. 0
3. LP—L9—ESTIMATES AND POINTWISE ESTIMATES FOR e~ ‘Hv

In this section we shall prove LP—L%estimates for e "7V and pointwise estimates
for the integral kernel of e=*#v on ().

More precisely, we have the following:

Proposition 3.1. Assume that the measurable potential V =V, —V_ satisfies V1 €
Kq(Q). Let 1 <p < q<oo. If [|[V_|[ky0) < 274, then

(2mt)~d1/p=1/a)/2
(1= V-l ka2 /27a)
for any f € LP(S2). In addition, if we further assume that V satisfies

(3.1) e fllzage) < N flliry, VE>0

IVollky) < vas
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then the kernel K (t,z,y) of e "V enjoys with the proprerty that

2t —d/2
(3.2) 0< K(t,x,y) < (2rt) elul/R

< Yt >0
1 — V-l xae)/7a

for any xz,y € Q.
The following lemma is crucial in the proof of Proposition BI.

Lemma 3.2. Let d > 3. Assume that the measurable potential V =V, —V_ satisfies
Vi € Kq(Q) and ||V_||xy) < 47a. Let V be the zero extension of V to R and Hy
the self-adjoint operator Hy on R, Then for any non-negative function f € L*(2),
the following estimates hold:

(3.3) (e f)(z) >0,

(3.4) (™) (@) < (e f) (@)
fort > 0 and almost everywhere x € ), where f is the zero extension of f to RY.

The proof of Lemma is rather long, and will be postponed. Let us prove
Proposition B

Proof of Proposition B1. Let f € C§°(2). Applying (B33) from Lemma B™ to non-
negative functions |f| — f and |f| + f, we obtain

— (e ) (x) < (e f) (@) < (eI f]) ()
for any t > 0 and almost everywhere z € €. Hence the above inequality and (B2)
from Lemma B2 imply that

(3.5) (e f) (2)] < (7% f]) (x)

for any ¢ > 0 and almost everywhere z € (2. Here we recall the result of LP—L7-
estimates for e v on R%:

e - (2mt)—d0/p=1/a)/2
(3.6) le™ 7] £ po(ray <

(1 = V-l kymay/27a)?
provided 1 < p < ¢ < 0. (see Proposition 5.1 from [?]). Combining (BH)—(3H),
the estimate (Bdl) can be obtained for f € C§°(€2). Thus, by density argument, we
conclude the estimates (BII) for any f € LP(2) if p < oco. The case p = oo follows
from the duality argument.

We now turn to prove (B2). We adopt a sequence {j.(x)}.~o of functions defined
as the following:

(3.7) ) 1= ij(f), ¢ e R

ed

Hf||Lp(Rd)7 Vit > 07

where

. Cd 6_1/(1_‘7;'2)7 |x| < 1’
j(z) =
0, lz] > 1

—1
Com ([ 0]
R4

with
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As is well-known, the sequence {j.(z)}. enjoys with the following property:
(3.8) je(-—y) =6, inS'RY (e—0),
where 9, is the Dirac delta function at y € Q. Let y € Q be fixed, and let K(¢,x,y)

and K(t,z,y) be kernels of e™'#v and e~ respectively. Taking e > 0 sufficiently
small so that supp j:(- —y) C €2, and applying (B23)—(84) from Lemma B2 to both
f and f replaced by j.(- — y), we get

0< / K(t,2,2)j.(= — y)dz < / R(t,2,9)j.(= — y)d=
Q Rd

for any = € Q. Noting (BR) and taking the limit of the previous inequality as & — 0,
we get R
0< K(t,z,y) < K(t,2,y)

for any t > 0 and z € (). Finally, by using the pointwise estimates:
—d/2 —d/2
R(t,z.y) < — 270 el 5t (: (2rt) e—iw—w?/&)
L= |IV_ | ko (mey/va L — Vol k) /va
see Proposition 5.1 from [2]), we obtain the estimate , as desired. e proof o
Proposition 5.1 f b h B2 d d. The proof of
Proposition B is finished. U

In the rest of this section we shall prove Lemma B™. To prove Lemma B2 we need
further the following two lemmas. The first one is concerned with the existence and
uniqueness of solutions for evolution equations in abstract setting.

Lemma 3.3. Let 77 be a Hilbert space. Assume that A is a non-negative self-adjoint
operator on . Let {T(t)}i>0 be the semigroup generated by A, and let f € H and
u(t) =T(t)f. Then u is the unique solution of the following problem:

u € C([0,00); ) N C((0,00); D(A)) N CH((0, 00); ),

w'(t) + Au(t) =0, t>0,

u(0) = f.

For the proof of Lemma B33, see, e.g., Cazenave and Haraux [, Theorem 3.2.1].

The second one is about the differentiability properties for composite functions of
Lipschitz continuous functions and W1P—functions.

Lemma 3.4. Let d > 1 and Q be an open set in RY, and let 1 < p < oco. Consider
the positive and negative parts of a real-valued function v € WhHP(Q):

ut = X{u>0}U;, U = —X{u<0}U.
Then u* € W'P(Q) and
Ou 0" = Xqus01 O, O™ = —X{ucorOp,u (1 <1< d),
where 0,, = 0/0x;.

For the proof of Lemma B4, see Gilbarg and Trudinger [5, Lemma 7.6].

To prove (B3), we show that the negative part of eV f vanishes in €2, provided
f > 0. For this purpose, we prepare the following lemma.
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Lemma 3.5. For any non-negative function f € L?(Q), let u(t) = eV f. Then the
negative part u(t) of u(t) belongs to Hy () for each t > 0.

Proof. Obviously, u(t) satisfies

owu(t,x) + Hyu(t,z) =0, t>0, z€QQ,

u(0,2) = f(z), z €.

Lemma B=3 assures that

u € C([0,00); L*(£2)) N C*((0, 00); L*(2))
and

u(t) € Hy(QY), Hyu(t) € L*(Q) for each t > 0.

Since u(t) € H}(Q) for each t > 0, there exist p,(t) € C°(Q) (n = 1,2,...) such
that
(3.9) on(t) = u(t) in HY(Q)

as n — oo for each ¢t > 0. Here {¢,}, also depends on t. For the convenience of
notation, we may omit the time variable ¢ of ¢,, without any confusion. Let us take
a non-negative function ¢ € C*°(R) as

=—x, x< -1,
P(r) < —x, —1<z2<0,

=0, x>0,
and put
(3.10) () = w(zm’ n=1,2,---.
Then there exists a constant C' > 0 such that
(3.11) [ (x)] <O, VxeR, VneN.
Let us consider two kinds of composite functions v, o ¢,, and ¢, o u. We show that
(3.12) UYn 0 p —Ppou— 0 in H(Q),
(3.13) Ypou—u_ —0 in H(Q)

as n — o0o. In fact, by the mean value theorem, we have

/0 P! (ngn +(1- 9)u) (pn — u)db

<Cllen — ull 2@,

(3.14) w0 wn —Pnoulizn) =

L*(Q)

and the derivative of v, o ¢, — 1, o u is written as

(3.15) 102, (¥ © Pn — P 0 u)|2()
=147, (©n) D pn — Yy, (1) O, ull 2
<[[¢5(0n) (Oz,on — Oz, u) | 220) + {00 (0n) — 5 (W)} ]| L2(e)
SO0y 0n — Owyull L2y + [ty () — by (1) } 0 ull L2 (),
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where we used (B-) in the last step. Noting the pointwise convergence and uniform
boundedness with respect to n:

{0, (on) () — ¥l (u)(2) }Op,u(z) = 0 asn — oo for ae. x € €,
[{w(en) (@) — U () (@) } Os,u(2)| < 2C105,u(x)| € L*(9),

we can apply Lebesgue’s dominated convergence theorem to obtain

(3.16) I{tn(en) = ¥ (W)} 0z, ull 20y — 0

as n — oo. Hence, summarizing (B9) and (BT4)—(BIH), we obtain (B12).
As to the latter convergence (BL3), since

| 0 u)(2) —u™(2)] < 2Ju(2)] € L*(Q),

100, (V0 0 ) (x) = Dpu™ ()] < (C +1)[dp,u(x)] € L*(Q),
and
(Vn o u)(x) —u”(z) =0,

Or, (Pn © ) (x) = Opu™ (x) = {95, (1) + X{u<o} }Oru(z) = 0

as n — oo for almost everywhere x € ), Lebesgue’s dominated convergence theorem
allows as to obtain (B7L3). Thus (BI2)—(B=L3) imply that

Ypow,—u- —0 in H(Q) (n— o).
Since ¥, o ¢, € C5°(Q), we conclude that u= € H}(2). The proof of Lemma B3 is
finished. O

We are now in a position to prove Lemma B2

Proof of Lemma B2. Let f € L*(Q) and f > 0 almost everywhere on €. Put
u(t) = e MV f fort > 0.

If we show that ||u’(t)||2Lz(Q) is monotonically decreasing with respect to ¢t > 0, then
we can obtain

u (t,z) =0

for each ¢ > 0 and almost everywhere = € Q, since u~(0,z) = f~(z) = 0 for almost
everywhere x € ). This means that

u(t,z) >0

for each t > 0 and almost everywhere z € 2; thus we conclude (B33). Hence it is
sufficient to show that

d N2
(3.17) y Q(u )" dz <0.
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We compute

(3.18) 4 (u_)de _4

dt Q _dt {u<0}
=2 / w U dx
{u<0}

= — 2/ wu” dx
Q
:2/(Hvu)u_ dx
Q

where we use the equation u; + Hyu = 0 in the last step. Since u~ € H}(Q) by
Lemma B3, we have, by going back to Definition 271 of Hy/,

(3.19) /(Hvu)u_ dr = / Vu-Vu~ dx + / Vuu™ da.
Q Q Q

Here, by using Lemma B, we get

u?dx

Vu~ = _X{u<0}vu
and hence, the first term on the right of (B19) can be estimated as
/Vu Vu™ dx = — /|Vu ? dz.
As to the second, by (Z4) from Lemma P4, we have

/Vuudxz—/V]uFdx
Q Q
S/V_|u_|2dx
Q

gad/ \Vu™|? da;
Q

thus we find from a4y < 1 that

/(Hvu)u_ de < —(1— ad)/ Vu~|? dx
0 Q
<0

Y

and hence, combining this inequality and (BIR), we conclude (BT1).

Next, we prove (B4). Let us define two functions v (¢) and v®(t) as follows:
v (t) = e‘tﬁf/f and 0@ (t) = etV
for t > 0. Then it follows from Lemma B33 that v and v satisfy
v € C([0, 00), LA(RY)) N C((0, 00), L*(R)),
vO(t) € HY(R?), HypoW(t) € L*(RY),
v () + Hypo(t) = 0,
v(0) = f
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and
o9 € 00 c0), L) 1C1(0, 0, L9)
V(1) € HI(Q),  Hyo® (1) € LA(Q),
(3.21) v®(t) + Hyo?(t) = 0,
0(2)(0) f

for each t > 0, respectively. We define a new function v as

o(t) == 0D (1) — (1)
for ¢ > 0, where v(Y)(t)|q is the restriction of vV (t) to Q. Let us consider the negative
part of v:
Vo= —X{v<0}V-
Then, resorting to (B=20)—(B=Z1), we have
v~ € C([0,00), L*(2)) N C*((0, 00), L*(%2)).

Moreover, by using Lemma B4, we have v~ € H'(Q), since v € H'(Q2). Once we
prove that

(3.22) v™ € Hy (),
we can get, by the previous argument,

d
(3.23) = [ () de<o.
In fact, by the definition of v~, we have

d
— <U7)2 dr = — 2/ vfl)v* dz + 2/ Uf@zf dz
dt Q {v<0} {v<0}

—2/ (HpvM)o~ dx—Z/(HVv(Q))v dx
R¢ Q

where T) is the zero extension of v~ to R?, and we use equations vfl) + ﬁf/’U(l) =0
and 02 + Hyv® = 0 in the last step. Since v~ € H(Q) by (B22), we have, by
definitions of Hg v and Hy

/ (HovW)o™ do — /(Hv’l)(z))v_ dx
Rd

Q

Vol . Vi~ dz + / Voo~ do — / Vo . Vo dr — / Vo~ da
R4 Q Q

R4

:/Vv-Vv_dx+/Vvv_dx
Q Q
—(1—ad)/ Vo™ |2 dx
Q
<0.

Hence we obtain (B23), which implies the required inequality (82).
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It remains to prove (B222). The proof is similar to that of Lemma BA. Since
v®(t) € H}(Q) for each t > 0 by (BZ0), there exist ¢, = ©,(t) € C°() such that
©n — v? in HY(Q)

as n — oo. Put
va(t) = oW (t)la —gut), n=1,2,--,

for each t > 0. Let 1, be as in (BX0). As in the proof of Lemma B, we can show
that

Ypov, —v- — 0 in H(Q)
asn — 00. Since v;; have compact supports in supp ¢, by v(¥) > 0 on €, the functions

Y, ov, also have compact supports in 2. Let ¢, o v, be the zero extension of i, 0v,
to Rd and let J. be Friedrichs’ mollifier: For u € LIOC(Rd),

(@) = (e eu)(o) = [ o= pul)dy, @ € R

where {j.(x)}. are functions defined in (B7). Taking ¢ = ¢,, sufficiently small so that
en — 0 (n — 00) and supp J;, <¢n o vn> is contained in €2, we have

Jeo (o v7)la € C(Q).

Since
Je, (1%01};) ‘ —v~ =0 in H(Q)
Q
as n — 00, we conclude (B222). The proof of Lemma B2 is complete. O

4. LP—(?(L9),—BOUNDEDNESS FOR (0Hy — 2)7°

In this section we shall prove the boundedness of resolvent (§Hy —2)=? (8 > 0) in
scaled amalgam spaces. The result in this section will play an important role in the
proof of Theorem .

More precisely, we have:

Theorem 4.1. Let 1 < p < g < o0 and B > d(1/p —1/q)/2, and let z € C with
Re(z) < 0. Then there exists a constant C = C(d,p,q,3,2) > 0 such that

(4.1) 1(0Hy — Z)iﬁH«%(LP(Q),L‘I(Q)) < cgmit/emt/a,
(4.2) [(0Hy — Z)_BH%(LP(Q),ZP(U)G) < Ccp~i/r=1/a)/2
for any 6 > 0.

Proof. Let us first prove (B). We use the following well-known formula: For z € C
with Re(z) < 0 and 8 > 0,

(4.3) (Hy —2)7F = ﬁ /OOO = teste v gt
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Resorting to the formula (B23) and LP—L%estimates (B1) for e~V in Proposition
B0, we can estimate

1 OO - e(z -
07 =2 sy < 55 [ 177 e g

< Coa0/r=1/0)/>2 / 91PN YD2 gt || £ oo
0

Since 8 > d(1/p — 1/q)/2 and Re(z) < 0, the integral on the right is absolutely
convergent. Hence we obtain

1(OHy — 2)77 fllogy < COMPTID2| £l Loy
This proves (E).
Let us turn to the proof of (A2). If we can prove that
(4.4) e 1Y Fllip(ray, < CO™NP=YD/2(4=d/p=VD/2 L 1)|| f||1p(), VE>0

for any f € LP(2) provided 1 < p < ¢ < oo, then the estimate (E=4) will be obtained
by combining (B=3)—(E4). In fact, we can estimate

1(0Hy — 2)7" fller (9,

1 /Oo
S— tﬁ 1 Re ||€_t0va||EP Lll dt
L(3) Jo (

<Cp—1/r- 1/q>/2/ Pt R B (A= YDR L ) dt - || £ oo
0

Since 8 > d(1/p — 1/q)/2 and Re(z) < 0, the integral on the right is absolutely
convergent. Hence we conclude that

1(OHy — 2) ™2 (), < COTNPVDL2 £l g

This proves (E=2). Therefore, all we have to do is to prove the estimate (B). To this
end, we prove the following estimate: For 1 < ¢ < oo and any 6 > 0,

4.5 Ko(0t, || (o), < COOVD/2(4=d0=1/a)/2 4 1) g > 0,
(L)

where Ky(t,x) is defined by

—d/2
Ko(t,z) = (2mt) =4/ e loP /8t —. oy g2l /8t
1= Vol k) /7a

for any ¢ > 0 and z € R?. In fact, we compute ||Ko(0t, )| ze(c,n)) for the case n =0
and n # 0, separately:
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The case n = 0: We can estimate
‘2

1/q
alz
(4.6) |u<o<et,~>um(cg(0»gq(et)—w( / -t dw)
|

|<91/2

glal? Ya
= Cl(et)d/z( / e~ s (0t)Y? dx)
ol<5id7e

1/q
S C(0t>d(11/q)/2</ 67(1\2\2 dx)
R4
< C(gt)—d(l—l/q)ﬂ_

The case n # 0: We can estimate

2 1/q
_ _ alz|
(4.7) ZHKo(é’t,')HLq(cg(n)) < Cy(0t) d/QZ (/ ( )e 801 dx)
Co(n

n#0 n#0

1/q
< Cl(et)_d/QZ ( sup e_;ﬁ) : (/ dx) :
nt0 z€Cy(n) Cy(n)

< x| < 2|91/2n|, x € Cyp(n),

Here observing that
6'/*n]

we can estimate the right member of (E77) as

et d/Q(Ze 16t) 9d/2 1/q

n#0
and hence, we get

D Ko (08, )|l La(comy < Ca(61) d/2(ze |?6t> (6921,

n#£0 n#0

Here, by explicit calculations, we see that

d
g T T Y Y
Eelﬁt:ge 16t =92 Eelﬁt
Jj=1

n#0 n#0
o, d
<24 ( / e~ 16t d:c)
0
—4dyd/2.d/2
Summarizing the estimates obtained now, we conclude that

(4.8) D K08, ) wacymy <47 - Cy(08) 42 (09%) 10
n#0
:4dﬂ_d/2010—d(1—1/q)/2‘

Combining the estimates (I8)—(E=8), we obtain (E3), as desired.
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We are now in a position to prove the key estimate (B4). Let f € LP() and f be
a zero extension of f to R% Resorting to the estimate (82) in Proposition B, we
have

||€_t9HVf||£P(LQ)e = /QK(‘%WI’ ) f(y) dy

LP(L9)g

IN

/Q K (6, 2,9)|f(y)| dy

£P(L)g

<\ | Kol0t,z,y)|f(y)|dy

R4

= KO(Qtﬂ ) * |f|

Lr(L9)g

P (L9)g (R)

Applying the Young inequality (A=) (see appendix [Al) to the right member, and
using the estimate (E3), we can estimate

||€_t9HVf||gp(Lq)0 S 3d||K0(0t, -)Hll(Lr)e(]Rd)||f~||fp(ép)0(Rd)
< CoHYIR (A2 L 1) fl o ey

= Co~ MW=YDL (=d0/p=1D/2 1 1)|| f|| 1oe,

provided that p, q,r satisfy 1 < p,q,7 < oo and 1/p+ 1/r —1 = 1/q. This proves
(B23). The proof of Theorem B is finished. O

5. COMMUTATOR ESTIMATES

In this section we shall prepare commutator estimates. These estimates will be also
an important tool in the proof of Theorem [I. Among other things, we introduce
an operator Ad as follows:

Definition. Let X and Y be topological vector spaces, and let A and B be continuous
linear operators from X and Y into themselves, respectively. For a continuous linear
operator L from X into Y, the operator Adk(L) from X into Y, k = 0,1,---, is
successively defined by

Ad°(L) =L, Ad*(L)=Ad**(BL - LA), k>1.

The result in this section is concerned with L*-boundedness for Ad*(e~#f¢), where
Ry is the resolvent operator defined by

Ry:=(0Hy +M)™', 6>0
for a fixed M > 0. Hereafter, operators A and B will be taken as
(5.1) A=B=ux;—0"n,; forsomeic{l, -, d}.
Then we shall prove here the following.

Proposition 5.1. Let d > 3. Assume that the measurable potential V is a real-valued
function on Q and satisfies V=V, —V_, Vi >0 such that Vi € K4(£) and

V-l ku@) < 474
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Let A and B be the operators as in (B1), and let L = e~%e. For any non-negative
integer k, there exists a constant C = C(d, M, k) > 0 such that

(5.2) 1A (™) || 200y < COF2(8)"
for anyt >0 and 6 > 0, where we put
() = V1+1t2.
First, we prepare L2-boundedness for Ry and 0., Ry to prove Proposition Bl

Lemma 5.2. Let d > 3 and V' be as in Proposition 1. Then the following estimates
hold:

(5.3) 1Rl m(r2(0) < M7,
(5.4) 102, Rol| z(12(0)) < M=Y2(1 — ag)~V/2971/2
for any 6 > 0, where
ag = Volrae g
474

Proof. Since Hy is the self-adjoint operator with domain
D(Hy) = {u € Hy() | Hyu € L*(Q)},
we can obtain (B33)—(64) by the spectral resolution. In fact, we have

o 1
I1Rof e = | e AV (O o

<M-? / d | By N 220
<M 72| 1220

for any f € L*(2). This proves (B33).
Since Ryf € D(Hy) for any f € L?(Q), we can write

IV Ry fIl720) = / (VRof -VRyf + VIRof|* - V|Ref|2> dx
0
0

=I+1I.

Then we can estimate

o A
< T EEE— 22
1< | G B W

o o 1
— -1 . . 2
- | o g e 1P W

<ot / AN\ By ) 1220
< 971M71’|f“%2(9),
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and by Lemma P4,

Ug/V\Rgf\?dx
Q

< ad/ |V Ry f|? dx.
Q
Combining the previous estimates, we conclude
IVRofl 720y <071 (1 —ag) "M flI7200)
for any f € L*(Q). The proof of Lemma 53 is complete. O
We are now in a position to prove Proposition bl.

Proof of Proposition . Let us denote by Z(2) the totality of the test functions
on €, and by 2'(Q) its dual space. We regard X as Z2(2) and Y as 2'(12) in the
definition of operator Ad. Then we have, by Lemma B in appendix

(5.5) Ad°(Ry) = Ry, Ad'(Ry) = —20Ry0,, Ry,

(5.6)  Ad*(Ry) = 0 {—2kAd" ' (Ry)0,, Ry + k(k — 1)Ad" *(Rp)Re}, k> 2.

Since Ry and 0., Ry are bounded on L*(Q) by Lemma 52, Adk(Rg) is also bounded
on L*(Q) for k > 0. Before going to prove (52), we prepare the following estimates
for Adk(Rg)i For any non-negative integer k, there exists a constant Cj > 0 such
that

(5.7) A" (Ro) || 2y < Crb™?

for any # > 0. We can prove (E21) by induction. For k = 0,1, we have, by using (E3)
and Lemma b2,

1A (Ro) || (220 = || Rell (120 < Co,

A (Ro) || (2(2)) = 20|| RoOu, Rol| (1200
S QQM—I . M—1/2(1 . ad)—1/29—1/2
= 10",

Let us suppose that (B70) is true for £ = 0,1,...,¢. Combining (68) and Lemma 52,
we get (B74) for k = ¢+ 1:

/+1
”Ad (o) B(L2(Q))
= |6 {—2(¢ + 1)Ad"(R)3,, Ro + €( + 1)AA™ (Ro) Ro } || 5 120
<20(0 + 1)0 { | Ad"(Ro) | a(r2(6)) 10 Roll a2y + 1AL (Ro) || 220 | Roll a2y }
§C€+1‘9 {0(/2 . 9—1/2 + 0((—1)/2}
SCZ+19(6+1)/2~

Thus (B72) is true for £ > 0.
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We prove (B2) also by induction. For k = 1, by using the estimate (b=) and the
formula (see Lemma B3 in appendix B)

(5.8) Adl (et = / i AL (Ry)e- - g,
we have '
t
[AQ (e7") || a2 () S/O lle™ "5 | a2 | A" (Ro) | 2 le ™ |z ds
<C4 / t 01/ ds
0
<C10Y2(t).

Let us suppose that (622) holds for £ = 1,...,¢. Then, by using the estimate (522)
and the formula (see Lemma BZ3)

Adé+1 (efith)

t
- / > Tl by, bs)Ad (e 0) AT (Ry) A" (71720 ds,
O by batt5=t
where constants I'(¢1, (5, 3) are trinomial coefficients:
14
L'y, 0y, l3) = ———
(1 62 ) IATATAN

we can estimate
’ »
A (&™) || sz

t
SCZ—H/ Z JAQ (e7"0) || sr2 () | A (Ro) | (20 X

0 4y +ta+t3=t
X ||AdZB (e_i(t_s)Rg)HE@([;(Q)) ds

t
SCE—H/ Z 0é1/2<8>€1 . 8(£2+1)/2 . 9£3/2<t _ S)ég ds
O b1 +ba+e3=¢

Thus we conclude (6). The proof of Proposition B is complete. U

6. PROOF OF THEOREM [@I.

In this section we shall prove Theorem 1. To begin with, let us introduce a family
of operators which is useful to prove the theorem. For any non-negative integer IV,
we define a family oy of operators as follows: We say that A € o7y if and only if
A€ B(L*(Q)) and

|||A|||N = sup H| : _01/2n|NAXCQ(TL < 00,
nezd

) H%‘(LQ(Q))

where x¢,(n) is the characteristic function of the set Cy(n).

First, we prepare two lemmas.
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Lemma 6.1. For any positive integer N, there exists a constant C' = C(d,N) > 0
such that

Z X0y (m) AXCym) [ Il L2(02)

mezd
<C (IAllazz@y + 0 NANL ANy ) Ixcom ez
foralln € 2, A € oy and f € L*(Q).
Proof. For the convenience of notation, we set
Amn = HXCe(m)AXCo(n)f||L2(Q)'

Let n € Z% be fixed. For w > 0 and N € N with N > d/2, we have, by Schwarz
inequality,

Zamn: Z |91/2m—61/2n|’N\61/2m—91/2n|Namn+ Z Qom

mezZd [m—n|>w |m—n|<w
SQ—N/2< Z |m_n|—2N>1/2< Z 162 — 642, 2Na3’m>1/2
|m—n|>w |m—n|>w
1/2 1/2
X ) (X )
[m—n|<w |m—n|<w

=:I(n)+ 11(n).
As to the first factor of I(n), since N > d/2, we can estimate
Z |m_n‘72N _ Z ’m|72N < CNw72N+d.
[m—n|>w |m|>w

As to the second factor of I(n), there exists a constant C' > 0, independent of m,n
and 6, such that

Yo 162 m =0 nNaz, < 107 m = 020N | xeym Axcym f |20

[m—n|>w |m—n|>w
< S 0PN [ A P de
|m—n|>w Co(m)
<Y [ e v da
‘m_n‘>w Cé’( )

§C/ ||z — 91/2n\NAX09(n)f]2 dx
Q

2
SCH' : _el/zn‘NAXCe?(n)me(Q)

2 2
<CNAI |xcoon
thus we find from the estimates obtained now that

(6.1) 1(n) < OO~ 2w Al x| 2 0y
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We now turn to estimate I1(n). Since

> o1<i4u

jm—n]<w
we can estimate, by the same argument as in I(n),

1/2
(6.2) II(n) < (1+ wd/2)< 3 che(m)AXCG(n)fH;(m)

Im—n|<w

< (1+ wd/2)||AXCe(n)f||L2(Q)
< (L4 w”?) | Al sz Xotm fl| 12y

Combining the estimates (61)—(62), we get

> i < CLOY 2N Al + (14 w02 All sz fxuon N 2y
mezZd
Finally, taking w = (|| A|| v /| Al #z2(0)) Y - 6712, we obtain
> IxcoemAxcom fllrxe

meZd
_ d/2N 1—d/2N
<C (14 llqzzan + 0 NAIY 1A ) Dxcam ez,
as desired. The proof of Lemma G is complete. O

Lemma 6.2. Let N be a positive integer, and let v € #(R). Then ¥(Ry) € Py.
Furthermore, there exists a constant Cy > 0 such that

(6.3) | (Ro)l| (z2)) < Cy, VO >0,

and there exists a constant Cxy > 0 such that

(6.4) (Rl < Cx6™ [~ 0 Md@)|de, 0 >0,
Proof. The proof is based on the well-known formula;
(6.5) w(Re) = (20) 2 [ i) ar

where 1) is the Fourier transform of ¢ on R. The estimate (63) is an immediate
consequence of the unitarity of e=%¢ the formula (E3) and v € .%(R).
As to the estimate (64), applying the formula (63), we obtain

ll<o(Ro)ll
= sup H’ : —el/gn‘N?ﬁ(Re)XCe(n) B(L2())
nezd
<(27)~Y2 sup / H] : —01/2n\Ne_itR"Xcg(n) %(Lz(g)ﬂ?&(m dt.
nezZd J —co
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Resorting to Lemma B with taking A = B = z; — 0'/?n; and L = e " we can
find from Proposition bl that

|- =6"2nNe "oy cym)

B(L2(Q)
N
k( —itR 1/2, |N—k
< ZC(N7 k?)HAd (e ' Q)H,@(B(Q))‘“ 0" n XCo(m) |l (L2 (02))
k=0
N
<D C(N, kO (g2,
k=0
thus we conclude that
(Rl < 973 O )| @t
k=0 0
which proves (B4). The proof of Lemma B2 is finished. O

We are now in a position to prove the main theorem.

Proof of Theorem I. Tt suffices to show L'-boundedness of ¢(0Hy). Let 8 > d/4
and M > 0. Let us define v € S (R) as

() = p ot = M), pe(0,1/M].
Then we can write
(6.6) V(A+M)T) =pNA+M)P, A>0.
Now we can estimate, by Holder’s inequality and the definition of amalgam spaces

(P(L7),g,
le(O0Hy) fllvay = Y lle(@H) fllocom)

nezd

< D G2 [lle(0Hy) £l 2ot

nezd

<O p(OHv ) fllin (12,5

where we used |Cy(n)['/? = %%, The right member in the above inequality can be
estimated as

l(OHY) flli 12y, =Il@(OHy)(OHy + M)P R} £l 12,
=[[¢:(Ro) Ry fllin(z2),
< Z Z HXce(m)w(Re)XC’e)(n)Rgf||L2(Q)

n€Zd mezd
where we used (63) in the second step. Resorting to Lemma B for A and f replaced
by ¥ (Rs) and RB f, respectively, we can estimate

Z X Co(m) ¥ (Re)XCotm) Ry f |l 2200

meZd

<C (I (Ro)lszzia) + 0=l B I 16 (Ro) sttty ) It B 1 200



LP-MAPPING PROPERTIES FOR SCHRODINGER OPERATORS IN OPEN SETS OF R? 25

Thus we obtain

||90(9Hv)f||L1(Q)

_ /2N —d/2N
<% (1 (Ro)ll sz + 0~ Il (RIS 1 (Bo) sty ) 1RG£ iz
Applying Theorem B0 and Lemma B2 to the above estimate, we conclude that
le(OHV) fllpi@ < COVH {1+ 079 (922N} 6794 f| 1

< Cllflleve,
where the constant C' is independent of §. The proof of Theorem I is complete. [J

7. A FINAL REMARK

As a consequence of Theorems [0 and A1, we have LP—L%boundedness of p(0Hy/).
LP—L%boundedness of p(0Hy ) is useful to prove the embedding theorem for Besov
spaces.

Proposition 7.1. Let ¢ and V' be as in Theorem [I1. Then there exists a constant
C' =C(d,p) > 0 such that for 1 <p < q < 0,

l(OHv)|| a(Lr@),La0)) < Co~I/p=a/2 - yp > 0.
Proof. Let us define ¢ € . (R) as
PN = (A +M)p(N), A=0.

By Theorems [0 and B0, for 1 < p < ¢ < oo and f > d(1/p — 1/q)/2, we can
estimate

le(OHY) || 2100y, 00)) = Il9(OHY)(OHy + M)P Ry || 2100y, 19(0)
< | @OHV) | s | Bg | i @).Lo)
< Cgfd(l/pfl/q)/%

This proves Proposition 1. 0

APPENDIX A. (THE YOUNG INEQUALITY)

In this appendix we introduce the Young inequality for scaled amalgam spaces.
The proof of this result is given in Fournier and Stewart [3].

Lemma A.1. Let Q = Rd} gp(Lq>9 = gp(Lq)g(Rd)} and let 1 < P, DP1,P2,9,41,42 < o0
with 1/py+1/po—1=1/p and 1/q1+1/qo—1 = 1/q. If f € [P'(L9)g and g € [P>(L%),,
then fxg € IP(L%)y and

(A1) 1S * gllerzayy < 3| fllim oy, | 9llwz (roz),

where f x g 1s the convolution of f and g.
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ApPPENDIX B. (RECURSIVE FORMULA OF OPERATORS)

In this appendix we introduce some formulas on the operator Ad used in §5-86.
Lemma B.1 (Lemma 3.1 from [{]). Let X andY be topological vector spaces, and let
A and B be continuous linear operators from X and Y into themselves, respectively.
If L is a continuous linear operator from X into Y, then there exists a set of constants

{C(n,m)|n>0,0<m<n} such that

(B.1) B"L = zn: C(n, m)Ad™(L)A™™.

m=0

We discuss about two kind of recursive formulas of operator
Ry = (QHV + M)_l.

Hereafter we put
X=9(9), Y=2),
and

A=B=ux;—60Y%n; forsomeic{l,---,d}.

Lemma B.2. The sequence {Ad"(Ry)}32, of operators satisfies the following recur-
sive formula:

(B.2) Ad°(Ry) = Ry, Ad'(Ry) = —20R40,, Re,

(B.3)  Ad"(Ry) = 0 {—2kAd" ' (Rp)Ds, Re + k(k — 1)Ad* > (Rg)Rp}, k> 2.

Proof. When k = 0, the first equation in (BZ) is trivial. Hence it is sufficient to
prove the lemma for £ > 0. For the sake of simplicity, we perform a rough argument
without considering the domain of operators. The rigorous argument will be given in
the final part.

Let us introduce the generalized binomial coefficients I'(k, m) as follows:

k!

L(k,m) =< (k—m)ml’
0, k<mork<DO.

k>m >0,

Once the following recursive formula is established:

N

-1
(B.4) Ad*(Ry) = — Y T(k,m)Ad™(Rg)Ad*™(0Hy )Ry, k=1,2,---,
0

3
I

(B2)—(B3) are an immediate consequence of (BH), since

Ad'(0Hy) = 200,,, Ad*(OHy) = —20, Ad*(0H,)=0, k>3
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Hence, all we have to do is to prove (B4). We proceed the argument by induction.
For k =1, it can be readily checked that
Adl (Rg) :xiRg - Rgl’i

:RQ(QHV + M)%le — R@ZEi(QHV + M)Rg

:R9 (QI{VZIJz — T - QH\/) RQ

= — RyAd (0Hy )Ry

= —T'(1,0)Ad"(Ry)Ad" (O Hy) Ry.
Hence (BA) is true for £ = 1. Let us suppose that (B4) holds for & = 1,... 7.
Writing
(B.5) Ad“"Y(Ry) = 2;AdY(Ry) — AdY(Ry)z;,
we see that the first term becomes

z;Ad"(Ry)

/—1
:xi{ -y (e, m)Adm(Rg)Ade_m(QHV)}Rg
m=0

/-1
=— > T(t,m) {Ad™ " (Ry)Ad" "™ (6Hy) + Ad™(Ry)Ad" ™ (0Hy)} Ry

m=0

/—1

— > T (£, m)Ad™(Ry)Ad" "™ (0 Hy )x; Ry
m=0

:Z[1+IQ.

Here I; can be written as

¢
I == T(t,m—1)Ad"™(Re)Ad" ™ (0Hy )R,
m=1
-1
— > T(6,m)Ad™(Ry)Ad" ™ (0Hy )Ry
m=0
l
== T(t,;m — 1)Ad™(Ry)Ad“" " (0Hy) Ry

m=0

)4
=) T(¢,m)Ad™(Ry)Ad ™ (0Hy) + Ad“(Ry)Ad" (0Hy ) Ry

m=0
)4
=— ) T((+ 1, m)Ad™(Ry)Ad"" " (0Hy) + Ad‘(Rg)Ad' (0Hy ) Ry,
m=0

where we used
F't,m—-1)+TW,m)=T0(+1,m)
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in the last step. As to Iy, we can write as

/-1
I =— { > T, m)Adm(Rg)Adf—m(e)HV)Re}(QHV + M)z; Ry
m=0

=Ad"(Ry)(0Hy + M)x; Ry.

Hence, summarizing the previous equations, we get

¢
7 Ad(Ry) = = > T(0+1,m)Ad™ (Ry)Ad " (0 Hy)
m=0

+ Ad’(Ry) {Ad"(0Hy) + (0Hy + M)z;} Ry.
Therefore, going back to (B3), and noting
AdY(OHy) + (0Hy + M)x; = z,(0Hy + M),

we conclude that

l
Ad“" (Ryg) = = Y T (£+1,m)Ad™(Ry)Ad "™ (0 Hy)

m=0

+ Ad“(Ry) {Ad"(0Hv) + (0Hy + M)z;} Rg — Ad"(Rg)x;

l
=— ) T((+1,m)Ad™(Ry)Ad"" "™ (0Hy)
m=0
+ Ad*(Rg)x;(0Hy + M)Ry — Ad“(Rg)z;
l
== ) T((+ 1, m)Ad™(Rg)Ad" "0 Hy).

m=0

Hence (B3) is true for k = ¢+ 1.

The above proof is formal in the sense that the domain of operators is never taken
into account in the argument. In fact, even for f € C§°(Q2), each z;Ryf does not
necessarily belong to the domain of Hy, since we only know the fact Ryf € D(Hy) =
H}(Q)N{Hyf € L*(Q)} and z;Rpf may not be in L*(Q) for unbounded domains (2
at least. Therefore, we should perform the argument by using a quadratic form in a
rigorous way. We may prove the lemma only for £ = 1. For, as to the case k > 1,

the argument can be done in a similar manner. Now we write

7 (Ad (Ro) [, 9)9 = (Rof. ig)12(0) — (xif, Rog)12(00)
=11

for f,g € C5°(Q). Since Ryf, Rog € Hy (), there exist two sequences { f,, }n, {gm tm

in C3°(Q2) such that

fo— Rof and g, — Rgg in H'(2) (n,m — 00).
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Hence we obtain by x; f,,, igm € C§°(£2),
I'= T (fn, 2:9) 12(q)

= lim (@i fo, (Hv + M)Rog) 2

= lim {(V(xifn),VRgghg(Q) + /Q(V + M)x,,fnR_ggdx}

n—oo

=t {000 Voo + [ (V4 M)
n,Mm—00 Q
n,M—00 Q

I7 anlgéo (@ f, gm>L2(Q)

= lim ((Hy + M)Ry [, i9m) 120

= lim {<VR0f7v(xigm>>L2(Q) +/(V+ M)%R@fg_mdx}
m o Q

= lim {(an,V(ZEigm)>L2(Q)"‘/Q(V'f'M)xifng_mdx}

= lim {(axzfm gm>L2(Q) + <xlvfn7 ng)p(g) + /(V + M)xzfng_mdx} .
n,m—00 Q

Combining the above limits, we obtain

9’ <Ad1<R9)f7 g>@ = lim {(fn: axlgm>L2(Q) - <8x,fnagm>L2(Q)}

n,Mm—00

= lim (—20,, fn, gm)12(0)

n,Mm—00
=(—20,, Ry f, Rog) 12(0)

for any f,g € C3°(Q2). Thus (B3) is valid in a distributional sense. In a similar
way, (B33) can be also shown in a distributional sense. The proof of Lemma B is
finished. O

Lemma B.3. Let A, B and L be as in Lemma [B23. The following formula holds for
eacht > 0:

t
(B.6) Ad'(e7"1) = —i / e~ R0 AQ (Ry)e ()0 s,
0

Furthermore, the following formulas hold for k > 1:
(B?) Adk+1<efitR9)

t
— / > Dk, ko, ks)Ad¥ (€71 0) Ad™H (Ry) AP (e (7910 dis,
O kythothy=k
where the constants U(ky, ko, k3) are trinomial coefficients:
k!

F(kla k27 k3) = m
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with k = ]{31 + k?g + ]{33 and k’l, ]{72, ]{33 Z 0.

Proof. 1t is sufficient to prove the lemma without taking account of the domain of
operators as in the proof of Lemma B=. We can write

Adl(e—zth) — xie—zth . e—zthxi

t d ] )
- / % (G_ZSRQ.Tie—Z(t_S)Rg) ds
0

t
= —i/ e B (1, Ry — Rgxi)e_i(t_s)RG ds
0

t
= —i/ e~ R0 AdY (Ry)e~"=5)R0 s,
0

This proves (BE). The proof of (B7) is similar to that of Lemma B™. So we may
omit the details. The proof of Lemma B3 is complete. U
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