Definition.

A Bose–Mesner (BM) algebra \mathcal{A} is a commutative subalgebra of $M_X(\mathbf{C})$ indexed by a finite set X, satisfying

$$A \ni I, J$$

and closed under

- entrywise product (denoted by o)
- transposition

 \mathcal{A} has two bases:

- adjacency matrices $A_0, A_1, \dots A_d$ satisfying $A_i \circ A_j = \delta_{ij} A_i$.
- primitive idempotents E_0, E_1, \dots, E_d satisfying $E_i E_j = \delta_{ij} E_i$.

Definition.

A C-linear bijection $\tau:\mathcal{A}\longrightarrow\mathcal{A}$ is an automorphism of \mathcal{A} if

$$\tau(AB) = \tau(A)\tau(B)$$
$$\tau(A \circ B) = \tau(A) \circ \tau(B)$$
$$\tau(A^T) = \tau(A)^T$$

for all $A, B \in \mathcal{A}$.

 \mathcal{A} is bipartite if

$$X = X_1 \cup X_2,$$
 $|X_1| = |X_2|$
 $A = A_0 \oplus A_1$

where

$$\mathcal{A}_0 = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\} \qquad \mathcal{A}_1 = \left\{ \begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix} \right\}$$

Theorem.

 $\mathcal{A}=\mathcal{A}_0\oplus\mathcal{A}_1$: bipartite BM algebra

au: automorphism of ${\mathcal A}$

Assume $\tau^2=1$, $\tau|_{\mathcal{A}_0}=1_{\mathcal{A}_0}$.

Define $\sigma: \mathcal{A} \longrightarrow M_X(\mathbf{C})$ by

$$\sigma(A) = \begin{pmatrix} A_{11} & A_{12} \\ \tau(A)_{21} & A_{22} \end{pmatrix}$$

Then $\sigma(A)$ is a BM algebra.

Note. $\sigma(A \circ B) = \sigma(A) \circ \sigma(B)$ but in general $\sigma(AB) \neq \sigma(A)\sigma(B)$.

Remark.

 $\sigma(\mathcal{A}) = \mathcal{A}_0 \oplus \widehat{\mathcal{A}}_1$: bipartite BM algebra

 $\sigma\tau\sigma^{-1}$: automorphism of $\sigma(\mathcal{A})$

$$(\sigma \tau \sigma^{-1})^2 = 1$$
, $\sigma \tau \sigma^{-1}|_{\mathcal{A}_0} = 1|_{\mathcal{A}_0}$.

Thus by Theorem, we can define

$$\sigma':\sigma(\mathcal{A})\longrightarrow M_X(\mathbf{C})$$

Then $\sigma'\sigma(\mathcal{A})=\mathcal{A}$. In fact,

$$\sigma'\sigma = 1_{\mathcal{A}}, \qquad \sigma\sigma' = 1_{\sigma(\mathcal{A})}.$$

Example.

H: Hadamard matrix.

$$A = \frac{1}{2} \begin{pmatrix} 0 & 0 & J+H & J-H \\ 0 & 0 & J-H & J+H \\ J-H^T & J+H^T & 0 & 0 \\ J+H^T & J-H^T & 0 & 0 \end{pmatrix}$$

$$\mathcal{A} = \langle A \rangle$$

 $\tau = transposition$

Then $\sigma(A)$ is a BM algebra consisting of symmetric matrices.

 $\sigma: \mathcal{A} \longrightarrow \sigma(\mathcal{A})$ preserves entrywise product.

 $\{\sigma(A_i)\}\ = \ \text{adjacency matrices of}\ \sigma(\mathcal{A}).$

Define $\rho: \mathcal{A} \longrightarrow \sigma(\mathcal{A})$ by

$$\rho(A) = \frac{1 + \sqrt{-1}}{2}\sigma(A) + \frac{1 - \sqrt{-1}}{2}\sigma\tau(A).$$

Then ρ preserves ordinary product.

 $\{\rho(E_i)\}\ =$ primitive idempotents of $\sigma(\mathcal{A})$.

This leads to the determination of the character table of $\sigma(A)$.

Example.

H = (1): Hadamard matrix

$$A = \langle A \rangle \cong \mathbf{C}[\mathbf{Z}_4]$$

 $\tau = transposition = inversion$

Then

$$\sigma = \text{Gray map}$$

$$\sigma(\mathcal{A}) \cong \mathbf{C}[\mathbf{Z}_2 \times \mathbf{Z}_2].$$