5 2T FED
Mass Formula O
—iz1k

=T KA
K - 23



Definitions
o I';: finite field of ¢ elements.

e A (linear) code of length n is a linear sub-
space of Fy.

e | he equivalence of codes is defined by per-
mutation of coordinates.

e inner product: F’g' D u,v,

T
uv= ) U
j=1

e F? D C: a code of length n,
C‘LZ{UEFZ”M-U:OWEC}.

e C is self-dual if ¢ = C-+.



Weights

oF'gBu,

wt(u) = #{j|1 <j <n, u; # 0}.

e Minimum weight of C

min(C) = min{wt(u)|u € C, u # 0}.

Fundamental Problem in Coding Theory.
Given positive integers n, k, find a code C C Fy
with dim C = k such that min(C') is as large as
possible.

In this talk, however, we consider global prop-
erties of the set of all self-dual codes.

Note: the set of all codes of length n and
dimension k is a Grassmann space.



Assume g = 2 (binary codes).

e ( is doubly-even if for Yu € C,

wt(u) =0 (mod 4).

e A doubly-even self-dual (d.e.s.d.) code ex-
ists iff n = 0 (mod 8).

Note: if C is a self-dual binary code, then

wt(u) =0 (mod 2)

for YVu € C. Requiring the divisibility by 4 is the
only meaningful divisibility condition (Gleason—
Pierce).



Extremal Codes

e If C is doubly-even self-dual (d.e.s.d.) code
of length n, then

min(C) < 4 [;—4] + 4.

A code achieving this bound is called ex-

tremal.

n bound example number
8 4 Hamming 1
16 4 Hamming? 2
24 38 Golay 1
32 3 Reed—Mulier 5
40 8 > 11395
48 12 QR > 1
56 12 > 166
64 12 > 3270
72 16 ? ?

> 3952 A 0




Again

e ¢. an arbitrary prime power,

o I'; a finite field of ¢ elements.

In characteristic# 2,

1
fluw) = S(ui +u3 4+ ug)

IS a quadratic form with associated bilinear
form

flutv) = f(u) = fv) =u-v.

In characteristic 2, there is no quadratic form

defined on F’;; whose associated bilinear form
IS u - v.

Over F5, one needs to restrict to (1)1, where

1=(1,1,...,1) e F&.



Note

1)+ = {u € F&lu -1 = 0}
= {u € F5|u - u = 0}
= {u € F3|wt(u) =0 (mod 2)}

Thus, for every self-dual code C,
C C (1)*+
hence

C=cCt>o (1)'



Define f : (1)+ — F5 by

flu) = (mod 2)

Then f is a quadratic form on (1)1 with asso-
ciated bilinear form u - v.

Since f(u) = 0 iff wt(u) = 0 (mod 4), C is
doubly-even iff f(u) =0 for all v € C.

If n =0 (mod 4), then f induces a nondegen-
erate quadratic form f on (1)1 /(1).



The orthogonal group

O(F) C GL({1)~/(1)) = GL(n - 2,2)

acts transitively on doubly-even codes of any
given dimension containing 1 (Witt's extension
Theorem).

If n = 0 (mod 8), then the orthogonal group
O(f) acts transitively on the set of d.e.s.d.
codes of length n.

The symmetric group on n letters, permuting
coordinates, is a subgroup of O(f).

Study the set (homogeneous space) of d.e.s.d.
codes.



Define the graph [:

vertices = d.e.s.d. codes of length n.
edges = (C,C") with dm(CnC’) =n/2 — 1.

Then I has diameter n/2 — 1, and O(f) acts
distance-transitively on .

Define the graph A:

vertices = equivalence classes of
d.e.s.d. codes of length n.
edges = ([C],[C']) with dm(CNC') =n/2 —1.

What is the diameter of A7

n | #vertices | diameter
3 1 0
16 2 1
24 9 4
32 85 ?
40 | > 17492 ?




Mass Formula
(MacWilliams—Sloane—Thompson 1973)

#doubly-even self-dual codes of length n

n/2-2
= |] @?+1)
7=0
n!
- O:%to | Aut(C)|

equivalence

This gives a method to verify that a classifica-
tion of d.e.s.d. codes of length n is complete,
for small n.

Generalization
(1) Mass formula for weight enumerators.

(2) Mass formula for Type II codes over For.



The weight enumerator

We(z,y) = Z xn—wt(u)ywt(u)
ueC
—_— xn _|_ . s

Its mass formula

Y, Wolz,y)

C: d.e.s.d.
length n

n/2-3
= ]I @ +1)

j=0

% (272,/2-—2(:877, + ™) + Z (Z’)xn—kyk)
4|k

T his formula can be used to show the existence
of extremal code of length 40.



>, We(l,y)

C:. d.e.s.d.
length n

n/2-3
= II @+1@72+()v*+-)

7=0
If n = 40, then

n/2—2 n
2 > (4)
Each Wg(1,y) has constant term 1.

Each Wo(1,y) has integral coefficients.

Thus 3C such that Wo(1,y) has no term y%.
So min(C) > 8. Such a code C is extremal,

since
Tn
4 H 4=8
24 T



The Biweight enumerator

Biwtc (200, o1, 210, Z11)
— Z xwtoo(’u,’v) Wt01(’u,’u) tho(’u,'u) thl(uv)

00 01 Z10 Z11
u,veC

U = (0.. O 0...0 1...1 1 .1)

v= (0...0 1...1 0...0 1. .1)

More generally, one can define the weight enu-
merator of degree g

ta
gc(wa,aeF Y= > 1] Ty (u)
ucC9 aEFg
We = Wi c, Biwtc = Wa ¢
The mass formula

Z Wg’O(afa,; a € Fg)

C: d.e.s.d.
length n

can be computed in principle (Runge, 1996).

We have found a nice formula for the case g =
2 in terms of the root system FEg.



Theorem (Ozeki—M.).

n/2—4
S Biwte(x) =227 [ (29 41)
C: d.e.s.d. 7=0
length n
X Z {a, x)"
aEEg
where

{a, x) = agoZoo + @p1%01 + @10T10 + @11211
a = (aoo, @01, @10, @11) € B C C*
E§ = (unique) embedding of the root
system Eg into C% invariant
under the multiplication by v—1



The root system Eg consists of the 240 vectors

1 1
—~—_(4+2,0,0,0,0,0,0,0),... (0,0,0,0,0,0,0,+2),

V2 "2
and

1(****0000)1(0000 , %, ¥, k)
\/577777’? ?‘\/E IR ?
1(**00**00)1(00**00 ),
PIMAAE IO 3 y Ky 3k

Yo 7z

1 1
0,0, *,%,%,%,0,0), x,%,0,0,0,0, %, %
\/5( )\/5( ),
1(*0*0*0*0)1(0*0*0 , 0, %)
R B B | ? ? 2 7*7

V2 V2
1(0*0**0*0)1(*0*00*0*)
\/5’?”7,? "\/5 7
1(*00*0**0)1(0**0*00*)
ﬁ??????? ?\/5 N ?

1 1
—O,*,*,O,O,*,*,O,H——*,O,O,*,*,O,O,*,
Ned V3 )

where x means 1. The latter 14 x 16 vectors,
if the signs are discarded, give 14 hyperplanes
of the affine geometry AG(3,2) = F3.



Since

Biwtc(z,0,0,y) = Wo(z,y)
we obtain

Corollary.
1 n/2—3

> Welmy) = I @+1) ¥ (ex)"
C: d.e.s.d. 3=0 a€eDY
length n

where

<a7 X) = apZ + o1y
a = (ag,a1) € DS C C?
DE = (unique) embedding of the root
system D, into C? invariant
under the multiplication by +/—1

The root system D, consists of 24 vectors

+ \/561, :|:\/§62, :|:\/§63, :|:\/§€4,

1
(1,41, 41, 4+1).
\/5( )



Modular Forms

e Broué—Enguehard (1972): If C is a d.e.s.d.
code of length n, then

We(03(271),02(27))
is @ modular form of weight n/2 on SL(2,7Z),

where
b3(r) = 3 ™
meEZ:
02(r) = Y gL/
meZ

where g = ™7,

Indeed, this is the theta series of the even in-
tegral unimodular lattice constructed from the

code C.



e More generally, Hermann (1991): If C is a
d.e.s.d. code of length n, then

Wy,c(faia € FY)

is a Siegel modular form of weight n/2 on
Sp(2g,7Z) where f,'s are theta constants
defined by

fa(T) = ) exp2mi(r[z + ;—a]),
x €49

and

T € Siegel upper half space
= {1 € My4(C) |TT=T, Im7 >0}

Note that the mass formula

Z Wg,C’(fa;a < F%) (#)

C: d.e.s.d.
length n

also gives a Siegel modular form of weight n/2
on Sp(2g,7).

It is easier to compute (#) than to compute
W, c(fa; a € FJ) for an individual code C!.



Not every modular form on SL(2,7Z) is a linear
combination of

We(03(27),02(27))
The Eisenstein series of weight 6
Feg = 12 — 33338y4 — 33:c4y8 -+ y12
with
z = 03(27),y = 02(27),

can not be obtained from the weight enumer-
ators since there is no d.e.s.d. code of length
n = 12.



If 8|n

1
53 Y. Welz,y)
HjLQO 3(23 + 1) ¢: des.d.
length n
alk

(Mac—S-T)
1

—_ ]__6 ZC<O¢{,X>TL (MU-O)
aeD,

If n =12, then (Mu-O) reduces to

212 _ 33584 _ 33748 4 412

BrZENY  Eisenstein series of weight 6

The subgroup of GL(2, C) leaving DY invariant
IS a unitary reflection group of order 96, and
its ring of invariants is isomorphic to the ring
of modular forms on SL(2,7Z) via the Broué—
Enguehard map

z — 03(27), y = 0-(27).



For a TOB B = {aq,...,ar} Of For over Fo,
and » € (1)1 C F%,, define

fB('lL) = Z 5 Oﬁj - F2T.

=1

Then fg is a quadratic form on (1)+, and

fe(u+v)— fg(u) — fg(¥) =u-v
for all u,v € (1)=.

Definition. A self-dual code C of length n
over For is called a Type II code with respect
toa TOB B if

fg(u) =0 for all uw e C,

or equivalently, ¢p(C) is doubly-even.



Although the definition of Type II codes de-
pends on the choice of a TOB, the classifica-
tion of Type II codes over For obtained so far
turned out to be independent of the choice of
a TOB.

Recently Betsumiya proved:

Theorem. The definition of Type II codes is
independent of the choice of a TOB.

In other words, if C is a Type II code over For
with respect to a TOB B, then C is a Type II
code over For with respect to any TOB.

One could consider self-dual codes over For
with the property that ¢5(C) is doubly-even
for (not necessarily trace-orthogonal) a basis
B of For over Fo.

We conjecture that such a code is automati-
cally Type I with respect to any TOB.



Further Generalization.

Combining the two generalizations:

(1) Mass formula for weight enumerators
(2) Mass formula for Type II codes over For
we are lead to:

(3) Mass formula for the weight enumerators
of Type II codes over For

More precisely, find

2. Wapo)(®v)
C: Type II code

of length n
over Fo-

This becomes a modular form of weight rn/2
after the substitution

X I—>93(2T), yl—>92(27').



In general,

2. W) (@)
C: Type II code

of length n
over Fo.

and

> Wel(z,y)
C: d.e.s.d. code
of length rn

are linearly independent.

More generally, find

. g
2 Wy.s5(c)(@a;a € F3).
C:. Type II code

of length n
over Fo-

T his becomes a Siegel modular form of weight
rn/2 after the substitution

Ta — fa.



