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Definitions and Preliminaries
Results and Methods

Covering Radius of a Subset of a Metric Space

Definition

X : a finite metric space

C : a subset of X

The covering radius of C is ρ(C ) = max
x∈X

(
min
c∈C

d(c , x)

)
.

ρ(C ) is the least nonnegative number ρ such that all points of X
are within distance ρ from some point of C .
Problem: Given X and |C |, minimize ρ(C ).
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Results and Methods

Binary Codes

F2 = {0, 1}.
X = Fn

2 with d = Hamming distance.

d(x , y) = the number of i ’s with xi 6= yi , where x , y ∈ X .
also d(x , y) = wt(x − y), the weight of the vector x − y , the
number of nonzero (in this case 1) entries in x − y .

C = linear code of length n, i.e., C ⊆ Fn
2, closed under binary

addition.

Problem: Given n, k, minimize ρ(C ) among linear codes C ⊆ Fn
2

with dim C = k.

C⊥ = {x ∈ Fn
2 |

∑n
i=1 xiyi = 0} : dual code
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Definitions and Preliminaries
Results and Methods

The Delsarte Bound
An Upper Bound on the Covering Radius ρ(C), due to Delsarte (1973)

ρ(C ) ≤ r(C ) := |{wt(c) | c ∈ C⊥, c 6= 0}|.
r(C ) is called the external distance, or the dual degree of C .

For arbitrary codes C , hard to assert something exact on
r(C ), since it depends on C⊥.

However, if C = C⊥, r(C ) is directly related to C itself.
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Definitions and Preliminaries
Results and Methods

Self-Dual Codes

Definition

A linear code C ⊆ Fn
2 satisfying C = C⊥ is called self-dual.

For a self-dual code C ,
ρ(C ) ≤ r(C ) = |{wt(c) | c ∈ C , c 6= 0}|.
Self-duality of C implies wt(c) is even for all c ∈ C .

There are self-dual codes C whose r(C ) is much smaller;
having the property wt(c) ≡ 0 (mod 4) for all c ∈ C .

Definition

A linear code C is said to be doubly even if wt(c) ≡ 0 (mod 4) for
all c ∈ C .
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Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual code is a linear code C with
C = C⊥, satisfying wt(c) ≡ 0 (mod 4) for all c ∈ C .

Proposition

A doubly even self-dual code exists if and only if the length is a
multiple of 8.

Definition

Let µ := [ n
24 ]. A doubly even self-dual code is said to be extremal

if min(C ) := min{wt(c) | c ∈ C , c 6= 0} = 4µ + 4.

For n = 32, {wt(c) | c ∈ C⊥, c 6= 0} = {8, 12, 16, 20, 24, 32}
has size 6, i.e., ρ(C ) ≤ r(C ) = 6.

It turns out ρ(C ) = r(C ) for all such codes C .
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The Sphere Covering Bound
A Lower Bound on the Covering Radius ρ(C)

The volume (the number of points) of a sphere of radius ρ in Fn
2 is∑ρ

i=0

(n
i

)
.

Proposition

|C |
ρ(C)∑
i=0

(
n

i

)
≥ 2n

This gives a lower bound of ρ(C ).
For self-dual codes (or more generally, for even codes), slight
improvement is possible:

|C |
[ρ(C)/2]∑

i=0

(
n

2i

)
≥ 2n−1, |C |

[(ρ(C)−1)/2]∑
i=0

(
n

2i + 1

)
≥ 2n−1.
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Table of Extremal Doubly Even Self-Dual Codes

length min(C ) ρ(C ) ≤ 2[n+8
12 ] the number

n 4[ n
24 ] + 4 of codes

8 4 2 1
16 4 4 2
24 8 4 1
32 8 6 5
40 8 6(?),7,8 ≥ 12579
48 12 8 1
56 12 8–9(?),10 ≥ 166
64 12 9(?),10,11,12(?) ≥ 3270
72 16 10–12(?) ?

Delsarte bound = 2[n+8
12 ]
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Definitions and Preliminaries
Results and Methods

Automorphism Group of Linear Codes

If σ is a permutation on {1, 2, . . . , n} and x = (x1, . . . , xn) ∈ Fn
2,

then σ(x) := (xσ−1(1), . . . , xσ−1(n)).

Definition

A permutation σ is an automorphism of a linear code C ⊆ Fn
2 if

σ(x) ∈ C for all x ∈ C .

Aut(C ) denotes the group of all automorphisms of C .

G := Aut(C ) ⊆ Sn ⊆ GL(n, F2).

Fn
2 is an F2G -module, C is an F2G -submodule.

Fn
2/C is an F2G -module.
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Results and Methods

Reduction by the Action of the Automorphism Group

ρ(C ) = max
x∈Fn

2

(
min
c∈C

(d(x , c))

)
= max

x+C∈Fn
2/C

(
min

y∈x+C
wt(y)

)
= max

T∈Fn
2/C

(min(T )) .

G = Aut(C ) acts on Fn
2/C , and min(T ) = min(σ(T )) for

T ∈ Fn
2/C , σ ∈ G .

Want to find orbit representatives for Fn
2/C under the G -action.

|F64
2 /C | = 232: too large.
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Decomposition into F2G -Submodules

Fn
2/C = M1 ⊕M2 as F2G -module.

Decompose M1 into G -orbits, with R a set of representatives.
Compute min(r + x), r ∈ R, x ∈ M2, and return the maximum
value.

Improvement of a factor of |M1|
|R| ≈ |G |.

If Fn
2/C is indecomposable,

Find M1 ⊆ Fn
2/C .

Decompose (Fn
2/C )/M1 into G -orbits.

Compute min(x) for x ∈ ∪r∈R r and return the maximum value.
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Summary

Length n = 56: computed the covering radius of 9
double-circulant (Aut(C ) ∼= D27) extremal doubly even self-
dual codes, → all 10, meeting the Delsarte bound.

Length n = 64: computed the covering radius of 67 extremal
doubly even self- dual codes (|Aut(C )| ≥ 62), → all 10 or 11,
not meeting the Delsarte bound = 12.

length min(C ) ρ(C ) ≤ 2[n+8
12 ]

n 4[ n
24 ] + 4

56 12 8–9(?),10
64 12 9(?),10,11,12(?)
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