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A Cube Approximates a Sphere

A cube Q consisting of 8 vertices

{(± 1√
3
,± 1√

3
,± 1√

3
)}

is contained in the unit sphere S2 in R3.
Observe that Q is a good approximation of S2 in the sense that

1

8

∑
x∈Q

f (x) =
1

4π

∫
S2

f (x)dσ (1)

for any polynomial f (x) = f (x , y , z) of degree at most 3.
Indeed,

f (x , y , z) = ax3 + by3 + · · ·+ cz + d ,

the verification of (1) is reduced to the case f (x , y , z) = x2.
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Definition of a Spherical Design

Definition

A spherical t-design X is a finite subset of the sphere
Sn−1(µ) ⊂ Rn of radius

√
µ s.t.

1

|X |
∑
x∈X

f (x) =
1

surface area of Sn−1(µ)

∫
Sn−1(µ)

f (x)dσ

holds for any polynomial f (x) = f (x1, . . . , xn) of degree ≤ t.

Example

A cube is a spherical 3-design. An icosahedron is a spherical
5-design.
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Spherical Designs

Definition

The strength of a finite subset X ⊂ Sn−1(µ) is the largest integer
t for which X is a spherical t-design.
The degree s of X is the size of the set

{(x, y) | x, y ∈ X , x 6= y}.

Example

cube t = 3 |X | = 8 s = 3
icosahedron t = 5 |X | = 12 s = 3
root system E8 t = 7 |X | = 240 s = 4
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Even Unimodular Lattices

Definition

A lattice L of dimension n is a Z-submodule of Rn generated by a
basis of Rn.

L is integral if (x , y) ∈ Z ∀x , y ∈ L

L is unimodular if det(Gram matrix)= 1

L is even if (x , x) ∈ 2Z ∀x ∈ L.

An even unimodular lattice of dimension n exists iff n ≡ 0 (mod 8).

Example

∃ Unique even unimodular lattice of dimension 8. This is
generated by the root system of type E8.
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The Leech Lattice

∃ unique even unimodular lattice L of dimension 24 containing no
element of norm 2, that is, (x , x) ∈ {4, 6, 8, . . .} for ∀x ∈ L, x 6= 0.
For a given lattice L and a real number µ, denote by Lµ the set

{x ∈ L | (x , x) = µ} ⊂ Sn−1(µ).

Example

For the E8-lattice L, |L2| = 240, and L2 is a spherical 7-design.
For the Leech lattice L2 = ∅, |L4| = 196560, and L4 is a spherical
11-design.
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Subconstituents

Let X be a spherical t-design in the unit sphere in Rn, and pick
y ∈ X .
A subconstituent of X with respect to y and η is

{x ∈ X | (x , y) = η}.

Example

The two nontrivial subconstituents of a cube are equilateral
triangles.

Example

The two nontrivial subconstituents of an icosahedron are
pentagons.
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Theorem of Delsarte–Goethals–Seidel, 1977

Theorem

Let X be a spherical t-design in the unit sphere in Rn, and pick
y ∈ X . Let

s ′ = |{(x , y) | x ∈ X , (x , y) 6= ±1}|.

Then every subconstituent of X with respect to y is a
(t + 1− s ′)-design in Rn−1.

Example

An icosahedron is a spherical 5-design, and s ′ = 2. Its
subconstituents are regular pentagons, and they are
(t + 1− s ′) = 4-design.
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Subconstituents in the Leech Lattice

Example

Let L be the Leech lattice. The sizes of the subconstituents of L4

are:

1 + 4600 + 47104 + 93150 + 47104 + 4600 + 1 = 196560.

Each of the nontrivial subconstituents (of sizes 4600, 47104,
93150) is a spherical (t + 1− s ′) = 7-design.
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Generalized Subconstituents

Let X be a spherical t-design in Rn, y ∈ Rn be an arbitrary
element, η a real number.
A subconstituent of X with respect to y and η is

{x ∈ X | (x , y) = η}.

Example

A cube has a square as a subconstituent with respect to a normal
vector of a face.

Example

Let L be the Leech lattice, y ∈ L6. Then the subconstituents of
X = L4 with respect to y have sizes

552 + 11178 + 48600 + 75900 + 48600 + 11178 + 552 = 196560

It is well-known that the 552-set is a spherical 5-design.
Akihiro Munemasa Tohoku University
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Analogue of a Theorem of Delsarte–Goethals–Seidel

Theorem

Let X be a spherical t-design in the unit sphere in Rn, y ∈ Rn be
an arbitrary element of unit length. Let

s ′(y) = |{(x , y) | x ∈ X , (x , y) 6= ±1}|.

Then every subconstituent of X with respect to y is a
(t + 1− s ′(y))-design in Rn−1.

This implies that each of the “generalized” subconstituents of sizes
552, 11178, 48600 and 75900 is a spherical 11+1-7=5-design.
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Another Theorem of Delsarte–Goethals–Seidel

Theorem

If X is a spherical t-design with degree s satisfying t ≥ 2s − 2,
then X carries a (Q-polynomial) association scheme.

Remark

Looks somewhat similar to a theorem of Cohn-Kumar on universal
optimality of spherical codes.
There are association schemes related to spherical designs, whose
existence is not guaranteed by the above theorem.
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There are association schemes related to spherical designs, whose
existence is not guaranteed by the above theorem.
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New (?) Association Schemes

Let L be the Leech lattice, X = L4 has t = 11, s ′ = 5.
Subconstituents:

1 + 4600 + 47104 + 93150 + 47104 + 4600 + 1 = 196560

Every nontrivial subconstituent is a spherical 7-design.
4600: s = 4, hence association scheme (t ≥ 2s − 2)
47104: s = 5, also association scheme (why?)
Subconstituents of “47104”:

1 + 2025 + 15400 + 22275 + 7128 + 275 = 47104

Every nontrivial subconstituent is a spherical
(7 + 1− 5) = 3-design.
2025: s = 3, also association scheme (why?)
7128: s = 4, also association scheme (why?)
275: s = 2, hence associaton scheme (t ≥ 2s − 2)
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Next Interesting Case is Dimension 48

Because 48 is the dimension when the lower bound on the
minimum norm of even unimodular lattices jumps from 4 to 6.
The number of the shortest vectors is huge: 52,416,000.
One cannot work directly with the set of shortest vectors.
Besides, there are three lattices known, up to isometry.
Let L be an even unimodular lattice of dimension 48, minimum
norm 6 (We wish to classify such lattices, if possible)

Theorem (Venkov, 1984)

L6 is a spherical 11-design.

Using the property of being a spherical 11-design, we can compute
the sizes of generalized subconstituents.
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Subconstituents in Dimension 48

Let L be an even unimodular lattice of dimension 48, minimum
norm 6. Then the sizes of subconstituents are:

w.r.t. elt. of norm 6:
1, 36848, 1678887, 12608784, 23766960,. . . ,

w.r.t. elt. of norm 8:
2256, 192512, 2905728, 12816384, 20582240,. . . ,

w.r.t. elt. of norm 10:
100, 17150, 475300, 3898200, 12612600, 18409300,. . . ,

w.r.t. certain elt. of norm 12:
1176, 58656, 833592, 4642848, 12270384, 16802688,. . . ,

w.r.t. certain elt. of norm 14:
53, 5496, 133992, 1215048, 5190387, 11883840,
15558368,. . . .
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Equiangular Lines

Theorem

Let L be an even unimodular lattice of dimension 48, minimum
norm 6. Then for every element α ∈ L10,

{±(x − 5

2
α) | x ∈ L6, (x , α) = 5}

is a set of equiangular lines with angle arccos 1
7 , of size 50.

Also, there exists an element β ∈ L14 such that

{±(x − 5

14
β) | x ∈ L6, (x , α) = 6}

is a set of equiangular lines with angle arccos 1
7 , of size 53.
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