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Hadamard Matrix
A Hadamard matrixH is a square matrix of ordern with
entries±1, satisfying

HHT = nI.
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Hadamard Matrix
A Hadamard matrixH is a square matrix of ordern with
entries±1, satisfying

HHT = nI.
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Normalized Hadamard Matrix
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Normalized Hadamard Matrix
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Normalizedif the entries of the first row are all1.
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Code of a Hadamard Matrix
• H : a Hadamard matrix of ordern,
• p : an odd prime.
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• p : an odd prime.
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n
pH
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• Fact: If p||n, thenCp(H) is self-dual.
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• Fact: If p||n, thenCp(H) is self-dual.

• C3(H) is self-dual for Hadamard matrixH of order
24.
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Code of a Hadamard Matrix
• H : a Hadamard matrix of ordern,
• p : an odd prime.

Cp(H) = F
n
pH = {vH | v ∈ F

n
p}

= row space ofH overFp ⊂ F
n
p

• Fact: If p||n, thenCp(H) is self-dual.

• C3(H) is self-dual for Hadamard matrixH of order
24.

What if p = 2?
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Binary Hadamard Matrix
• H : a Hadamard matrix of ordern.
• J : the all-ones matrix of ordern.
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Binary Hadamard Matrix
• H : a Hadamard matrix of ordern.
• J : the all-ones matrix of ordern.

B =
1

2
(H + J).
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Binary Hadamard Matrix
• H : a Hadamard matrix of ordern.
• J : the all-ones matrix of ordern.

B =
1

2
(H + J).

(−1 7→ 0)
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Binary Hadamard Matrix
• H : a Hadamard matrix of ordern.
• J : the all-ones matrix of ordern.

B =
1

2
(H + J).

(−1 7→ 0)

C2(H) = F
n
2
B = {vB | v ∈ F

n
2
}

= row space ofB overF2 ⊂ F
n
2
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Binary Hadamard Matrix
• H : a Hadamard matrix of ordern.
• J : the all-ones matrix of ordern.

B =
1

2
(H + J).

(−1 7→ 0)

C2(H) = F
n
2
B = {vB | v ∈ F

n
2
}

= row space ofB overF2 ⊂ F
n
2

• Fact: If n ≡ 8 (mod 16), thenC2(H) is self-dual.
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Binary Hadamard Matrix
• H : a Hadamard matrix of ordern.
• J : the all-ones matrix of ordern.

B =
1

2
(H + J).

(−1 7→ 0)

C2(H) = F
n
2
B = {vB | v ∈ F

n
2
}

= row space ofB overF2 ⊂ F
n
2

• Fact: If n ≡ 8 (mod 16), thenC2(H) is self-dual.
• n = 24 : C2(H) is self-dual.
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Hadamard Matrices of Order 24
H : a Hadamard matrix of order24. Then

Codes and Lattices of Hadamard Matrices – p.6/12



Hadamard Matrices of Order 24
H : a Hadamard matrix of order24. Then

• C3(H) has minimum weight6 or 9
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Hadamard Matrices of Order 24
H : a Hadamard matrix of order24. Then

• C3(H) has minimum weight6 or 9

• C2(H) has minimum weight4 or 8

• There are60 Hadamard matrices of order24 up to
equivalence. (Ito-Leon-Longyear 1981; and Kimura
1989)
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Hadamard Matrices of Order 24
H : a Hadamard matrix of order24. Then

• C3(H) has minimum weight6 or 9

• C2(H) has minimum weight4 or 8

• There are60 Hadamard matrices of order24 up to
equivalence. (Ito-Leon-Longyear 1981; and Kimura
1989)

• Assmus and Keyobserved (in their book “Designs and
Their Codes”):

min C2(H) = 8 ⇐⇒
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Hadamard Matrices of Order 24
H : a Hadamard matrix of order24. Then

• C3(H) has minimum weight6 or 9

• C2(H) has minimum weight4 or 8

• There are60 Hadamard matrices of order24 up to
equivalence. (Ito-Leon-Longyear 1981; and Kimura
1989)

• Assmus and Keyobserved (in their book “Designs and
Their Codes”):

min C2(H) = 8 ⇐⇒ min C3(H
T ) = 9
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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1

2
(H + J).
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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1

2
(H + J).

• Z
24B

Codes and Lattices of Hadamard Matrices – p.8/12



Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1

2
(H + J).

• Z
48

[

B

4I

]
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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1

2
(H +J).

• Z
48





B

4I

2e1 + 1

2
1




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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1

2
(H + J).

• Z
48





B

4I

2e1 + 1

2
1



 × 1√
2
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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1
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= Λ(H) ⊂ R
24.
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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1

2
(H + J).
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8I

4e1 + 1





= Λ(H) ⊂ R
24.

Fact: Λ(H) is anevenunimodular lattice.
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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1

2
(H + J).

• Z
48





B

4I

2e1 + 1

2
1



 × 1√
2

= 1

2
√

2
Z

49





H + J

8I

4e1 + 1





= Λ(H) ⊂ R
24.

Fact: Λ(H) is anevenunimodular lattice.
{‖x‖2 | 0 6= x ∈ Λ(H)}⊂ 2Z
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Lattice of a Hadamard Matrix
• H : a Hadamard matrix of order24, B = 1
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= Λ(H) ⊂ R
24.

Fact: Λ(H) is anevenunimodular lattice.
min{‖x‖2 | 0 6= x ∈ Λ(H)}
= minimum normof Λ(H)
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Equivalence
Given a Hadamard matrixH of order24,
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Equivalence
Given a Hadamard matrixH of order24,

min weight or norm description
C2(H) 4, 8 Golay

C3(H) 6, 9 QR or Pless symmetry

Λ(H) 2, 4 Leech
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Equivalence
Given a Hadamard matrixH of order24,

min weight or norm description
C2(H) 4, 8 Golay

C3(H
T ) 6, 9 QR or Pless symmetry

Λ(H) 2, 4 Leech
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Theorem
Let H be a Hadamard matrix of order24 whose first row is
the all-ones vector. The following statements are
equivalent:

(i) C2(H) has minimum weight8,

(ii) C3(H
T ) has minimum weight9,

(iii) Λ(H) has minimum norm4.
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Theorem
Let H be a Hadamard matrix of order24 whose first row is
the all-ones vector. The following statements are
equivalent:

(i) C2(H) has minimum weight8,

(ii) C3(H
T ) has minimum weight9,

(iii) Λ(H) has minimum norm4.

Proofuses “Neighbors” ofΛ(H).
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Neighbors
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
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Z
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[
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4I

]

= Λ(H) = Λ′(H) = Λ′′(H)
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even 1√
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x · 1 even

min Λ(H)
= minΛ0(H)
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Neighbors
min Λ(H) = 2 or 4

Codes and Lattices of Hadamard Matrices – p.12/12



Neighbors
min Λ(H) = 2 or 4

= min Λ0(H)
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Neighbors
min Λ(H) = 2 or 4

= min Λ0(H)

= min{‖x‖2 | 0 6= x ∈ Λ′(H) = 1
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Neighbors
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