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Abstract

Let H be a Hadamard matrix of order 24. In this note, we show
that the extremality of the binary code of H is equivalent to the
extremality of the ternary code of HT . This fact has been observed
by Assmus and Key [1], as a result of the complete classification of
Hadamard matrices of order 24. Our proof is a consequence of more
general results on the minimum weight of the dual code of the code
of a Hadamard matrix, and does not depend on the classification of
Hadamard matrices of order 24.

1 Introduction

A Hadamard matrix is a square matrix H of order n with entries ±1 satisfying
HHT = nI. If p is an odd prime such that n ≡ 0 (mod p) and n ̸≡ 0
(mod p2), then the row vectors of a Hadamard matrix of order n generate a
self-dual code of length n over Fp. In particular, every Hadamard matrix of
order 24 generates a ternary self-dual code length 24. A ternary self-dual code
of length 24 is called extremal if its minimum weight is 9. Such codes have
been classified, and there are exactly two extremal ternary self-dual codes
of length 24, up to equivalence. It is known that, from the classification of
Hadamard matrices of order 24, there are exactly two Hadamard matrices,
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up to equivalence, which generate extremal ternary self-dual codes. One is
the Paley matrix, and the other is the matrix H58.

For a Hadamard matrix H, the matrix B = 1
2
(H +J) is called the binary

Hadamard matrix associated to H. A Hadamard matrix H is said to be nor-
malized if all the entries of its first row are 1. For a normalized Hadamard
matrix H, the binary code generated by the binary Hadamard matrix asso-
ciated to H is called the binary code of H. It is not difficult to check that if
H,H ′ are equivalent normalized Hadamard matrices, then the binary codes
of H,H ′ are equivalent. The binary code of a Hadamard matrix of order
n is self-dual if n ≡ 8 (mod 16) (see [2, Section 17.3]). In particular, the
binary code of every normalized Hadamard matrix of order 24 is a binary
doubly even self-dual code length 24. A binary doubly even self-dual code
length 24 is called extremal if its minimum weight is 8. The extended binary
Golay code is the unique extremal binary doubly even self-dual code length
24. It is known that, from the classification of Hadamard matrices of order
24, there are exactly two normalized Hadamard matrices, up to equivalence,
whose binary codes are equivalent to the extended binary Golay code. One
is the Paley matrix, and the other is the matrix H8.

Among the sixty equivalence classes of Hadamard matrices of order 24,
only two correspond to extremal ternary self-dual codes, and also only two
correspond to extremal binary doubly even self-dual codes. Somewhat re-
markable fact [1] was that, apart from the Paley matrix which is common
to the ternary and the binary cases, the transpose of the Hadamard matrix
H58 is equivalent to the matrix H8. Since the Paley matrix is equivalent
to its transpose, this phenomenon makes one wonder if there is any reason
why the extremality of the ternary code of a Hadamard matrix is equivalent
to the extremality of the binary code of its transpose. The purpose of this
note is to give a theoretical explanation of this phenomenon, which does not
depend on the classification of Hadamard matrices of order 24.

2 Rank of Hadamard matrices

Lemma 1. For a prime p and a matrix A ∈ Mn(Z), we have

rankp(A) + vp(det A) ≥ n.

Proof. Let d1|d2| . . . |dn be the elementary divisors of A, so that

PAQ = diag(d1, . . . , dn)
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for some matrices P,Q ∈ GL(n, Z). Set

r = max{i | di ̸≡ 0 (mod p)}.

Then

rankp(A) + vp(det A) = rankp(PAQ) + vp(
n∏

i=1

di)

= rankp(diag(d1, . . . , dn)) +
n∑

i=1

vp(di)

= r +
n∑

i=r+1

vp(di)

≥ r +
n∑

i=r+1

1

= n.

Lemma 2. Let p be a prime, and let A ∈ Mn(Z) be a matrix of which the
greatest common divisor of the row sums is d. If d ≡ 0 (mod p), then

rankp(A) + vp(det A) ≥ n + vp(d) − 1.

Proof. Let r1, . . . , rn be the row sums of A. Then there exists a matrix
P ∈ GL(n, Z) such that

P


r1

r2
...
rn

 =


d
0
...
0

 .

This implies

PA


1
1 1
...

. . .

1 1

 =

(
d ∗
0 A′

)
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for some A′ ∈ Mn−1(Z). Since d ≡ 0 (mod p), Lemma 1 implies

rankp(A) + vp(det A) = rankp(A
′) + vp(det A′) + vp(d)

≥ (n − 1) + vp(d).

Lemma 3. Let H be a Hadamard matrix of order n, p a prime such that
vp(n) = 1. Then the row vectors of H generate a self-dual code of length n
over Fp.

Proof. Let C be the code over Fp generated by the row vectors of H. Clearly,
C is self-orthogonal. Since

dim C = rankp H

≥ n − vp(det H) (by Lemma 1)

= n − vp(n
n/2)

= n − n

2
vp(n)

=
n

2
≥ dim C,

we have dim C = n
2
, hence C is self-dual.

Lemma 4. Let H be a Hadamard matrix of order n, normalized in such a
way that the entries of its first row are all 1. Let B be the binary Hadamard
matrix associated to H. Then

det B = ±nn/2

2n−1
.

Proof. Since

BBT =
1

4
(H + J)(HT + J)

=
1

4

nI + nJ +

n · · · n

0

 +

n
... 0
n



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=
n

4


4 2 · · · 2
2 2 1
...

. . .

2 1 2

 ,

we have

(det B)2 = det BBT

=
(n

4

)n

det


4 2 · · · 2
2 2 1
...

. . .

2 1 2



=
(n

4

)n

det


4 0 · · · 0
2 1 0
...

. . .

2 0 1


=

nn

4n−1
,

and the result follows.

Lemma 5. Let H be a Hadamard matrix of order n ≡ 8 (mod 16), nor-
malized in such a way that the entries of its first row are all 1. Let B be
the binary Hadamard matrix associated to H. Then the row vectors of B
generate a binary doubly even self-dual code of length n.

Proof. Let C be the binary code generated by the row vectors of B. Since
n ≡ 0 (mod 8), C is doubly even. Since H is normalized, the row sums of B
are n, n/2, . . . , n/2 whose greatest common divisor is n/2. Since

dim C = rank2 B

≥ n − v2(det B) + v2(
n

2
) − 1 (by Lemma 2)

= n − v2

(
nn/2

2n−1

)
+ 1 (by Lemma 4)

= 2n − v2(n
n/2)

= 2n − n

2
v2(n)
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= 2n − 3n

2

=
n

2
≥ dim C,

we have dim C = n
2
, hence C is self-dual.

3 Minimum weight of codes of Hadamard ma-

trices

Lemma 6. Let H be a Hadamard matrix of order n, C the ternary code
generated by the rows of H. Then C⊥ has no codeword of weight 3.

Proof. Suppose that C⊥ has a codeword of weight 3. Then there exists a set
{h1, . . . , h3} of three columns of H and ε1, ε2, ε3 ∈ {±1} such that

3∑
j=1

εjhj ≡ 0 (mod 3).

But this forces ε1h1 = ε2h2 = ε3h3, which contradicts (h1, h2) = 0.

Lemma 7. Let b = (b1, . . . , bm) ∈ Fm
2 . Then wt(b) is even if and only if∑m

i=1(−1)bi ≡ m (mod 4).

Proof. This is immediate from
∑m

i=1(−1)bi = m − 2 wt(b).

Lemma 8. Let m be a positive integer, and let K be a 2m × n matrix with
entries in {±1} satisfying KKT = nI2m. If 12mK ≡ 0 (mod 2m), then
12mK has n

2m
entries equal to ±2m, and all other entries are 0.

Proof. For a subset S of M = {1, . . . , 2m}, set

AS = {j | 1 ≤ j ≤ n, S = {i | Kij = 1}},
aS = |AS|.

Then clearly

{1, . . . , n} =
∪
S

AS (disjoint),

n =
∑

S

aS,
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where S runs through all subsets of M . Since 12mK ≡ 0 (mod 2m), and
−2m ≤ (12mK)j ≤ 2m, we have (12mK)j ∈ {0,±2m} for all j. Thus aS = 0
unless |S| = 0,m or 2m. Since

0 =
∑
i1 ̸=i2

(KKT )i1,i2

=
∑
i1 ̸=i2

n∑
j=1

Ki1jKi2j

=
∑
i1 ̸=i2

∑
S

∑
j∈AS

(−1)|S∩{i1}|+1(−1)|S∩{i2}|+1

=
∑
i1 ̸=i2

∑
S

(−1)|S∩{i1,i2}|aS.

=
∑

S

aS

∑
i1 ̸=i2

(−1)|S∩{i1,i2}|

= a∅
∑
i1 ̸=i2

(−1)0 + aM

∑
i1 ̸=i2

(−1)2 +
∑
|S|=m

aS

∑
i1 ̸=i2

(−1)|S∩{i1,i2}|

= 2m(2m − 1)(a∅ + aM) +
∑
|S|=m

aS(2m(m − 1) − 2m2)

= 4m2(a∅ + aM) − 2m
∑

S

aS

= 4m2(a∅ + aM) − 2mn,

we have

n

2m
= a∅ + aM

= |A∅ ∪ AM |
= |{j | 1 ≤ j ≤ n, |{i | Kij = 1}| = 0 or 2m}|
= |{j | 1 ≤ j ≤ n, (12mK)j = ±2m}|.

Theorem 9. Let H be a Hadamard matrix of order n, and let B be the
binary Hadamard matrix associated to H. Let Cp be the code over Fp gener-
ated by the rows of HT , where p is an odd prime, and let C2 be the binary
code generated by the rows of B together with the all-ones vector. Then the
following statements hold.
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(i) If C⊥
2 has a codeword of weight 4, then Cp has a codeword of weight

n/4.

(ii) If C⊥
3 has a codeword of weight 6, then C2 has a codeword of weight

n/6.

Proof. (i) If C⊥
2 has a codeword of weight 4, then there is a set of 4 columns

of B whose sum is 0 modulo 2. By Lemma 7, this implies that there is a set
of 4 rows of HT whose sum is 0 modulo 4. Let K be the 4×n matrix formed
by these 4 rows. Then by Lemma 8, 14K has n/4 entries equal to ±4, and
all other entries are 0. Thus, 14K mod p is a codeword of Cp of weight n/4.

(ii) If C⊥
3 has a codeword of weight 6, then there is a set of 6 columns of

HT whose sum with coefficients ±1 is 0 modulo 3, or equivalently, there is a
set of 6 rows of H whose sum with coefficients ±1 is 0 modulo 6. Multiplying
some of these 6 rows of H by −1, we obtain a Hadamard matrix H ′ of which
there is a set of 6 rows whose sum with is 0 modulo 6. Let K be the 6 × n
matrix formed by these 6 rows of H ′. Then by Lemma 8, 16K has n/6 entries
equal to ±6, and all other entries are 0. Let K(2) denote the submatrix of
B′ = 1

2
(J + H ′) corresponding to the 6 rows of K. Then 16K

(2) has n/6
entries equal to 0 or 6, and 5n/6 entries equal to 3. Thus, 16K

(2) mod 2 has
weight 5n/6. Since the matrices H and H ′ differ in signs of some rows, the
matrices B and B′ are the same up to the exchange of 0 and 1 in some rows.
This implies that the row vectors modulo 2 belong to C2, and hence C2 has
a codeword of weight 5n/6. Since C2 contains the all-ones vector, there is a
codeword of weight n/6.

A ternary self-dual [n, n/2] code C has minimum weight at most 3⌊n/12⌋+
3, and C is called extremal if C has minimum weight exactly 3⌊n/12⌋+3. For
n = 24, extremal ternary self-dual codes are those self-dual codes having no
codewords of weight 3 or 6. It is known that there are two extremal ternary
self-dual codes of length 24 up to equivalence (see [3]).

A binary doubly even self-dual [n, n/2] code C has minimum weight at
most 4⌊n/24⌋+4, and C is called extremal if C has minimum weight exactly
4⌊n/24⌋ + 4. For n = 24, extremal binary doubly even self-dual codes are
those binary doubly even self-dual codes having no codewords of weight 4. It
is known that there is a unique extremal binary doubly even self-dual code
of length 24 up to equivalence, namely, the extended binary Golay code.

Corollary 10. Let H be a normalized Hadamard matrix of order 24, C2

the binary code of H. Let C3 be the ternary code generated by the rows of

8



HT . Then C3 is an extremal self-dual [24, 12, 9] code if and only if C2 is an
extremal doubly even self-dual binary [24, 12, 8] code.

Proof. Note that C3 is self-dual by Lemma 3, while C2 is doubly even self-dual
by Lemma 5. Since C2 contains the all-ones vector, Theorem 9 implies that
C3 has a codeword of weight 6 if and only if C2 has a codeword of weight 4,
or equivalently, C2 is non-extremal. Since C3 has no codeword of weight 3 by
Lemma 6, the former condition is equivalent to C3 being non-extremal.
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