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Steiner system

Steiner systems originated from a problem posed by Steiner (1853),
solved by Kirkman (1847). The concept was already introduced by
Woolhouse (1844).
A Steiner system (or a Steiner t-design), denoted S(t, k, v), where
t < k < v are integers, is a pair (P,B) with

P: a set of v “points,”

B: a family of k-subsets of P, “blocks,” “lines,” “planes,” etc

such that

∀T ∈

(

P

t

)

, ∃!B ∈ B, T ⊂ B.

t = 2: ∀2 distinct points ⊂ ∃! line, every line consists of k points.
S(t, k, v) denotes not necessarily a unique mathematical object.
There may be many non-isomorphic S(t, k, v)’s for a fixed (t, k, v).
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S(t, k, v): ∀T ∈
(

P
t

)

, ∃!B ∈ B, T ⊂ B

Affine space over Fq: P = Fn
q , B = {lines in Fn

q }.
∀2 distinct points ⊂ ∃! line (has size q), v = |P| = qn

=⇒ S(2, q, qn).

t = 3: ∀3 distinct points ⊂ ∃! ?
collinear non-collinear

line plane
does not occur if q = 2

=⇒ S(3, 4, 2n).
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S(t, k, v): ∀T ∈
(

P
t

)

, ∃!B ∈ B, T ⊂ B

t ≥ 4: Only finitely many S(t, k, v) known.
Witt (1938): S(4, 5, 11), S(5, 6, 12), etc. (Mathieu groups)
Can’t expect any more from 4-transitive groups (Mathieu groups are
the only nontrivial 4-transitive ones, by CFSG)
If we are to prove there are infinitely many (too ambitious), we need
a unified algebraic approach.
t = 2: affine space over Fq is a unified construction, but not clear for
t > 3.
(Be modest): first understand completely known algebraic
construction of S(3, k, v). Hope to see why t > 3 is so different from
t ≤ 3.
(Be even more modest): first understand completely known algebraic
construction of S(3, 4, v) (called a Steiner quadruple system, denoted
SQS(v))
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∀T ∈
(

P
3

)

, ∃!B ∈ B, T ⊂ B

Steiner quadruple systems SQS(v) = S(3, 4, v)

Theorem (Hanani, 1963) ∃ SQS(v) ⇐⇒ v ≡ 2 or 4 (mod 6).
Cyclic SQS(v): P = {ξ ∈ C | ξv = 1}.
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Find a family of quadrangles B such that

∀T ∈

(

P

3

)

, ∃!B ∈ B, T ⊂ B

Akihiro Munemasa (Tohoku University) Steiner quadruple systems RIMS 2009 5 / 14



SQS(v) = S(3, 4, v) v ≡ 2 or 4 (mod 6)

P = {ξ ∈ C | ξv = 1}, ∀△ ⊂ ∃! ∈ B
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⊂

⊂

⊂

∃!kite

∃trapezoids

ordinary triangle6⊂kite
isosceles, right triangle6⊂trapezoid (6⊃diameter)
B = {all kites} ∪ {some trapezoids}:
Example: v = 10. Take all trapezoids 6⊃ diam. =⇒ SQS(10).
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P = {ξ ∈ C | ξv = 1}, ∀△ ⊂ ∃! ∈ B

triangle ⊂ kite or trapezoid

&%
'$r

rr
A
A
AA

�
�

��

We have implicitly assumed symmetry under the dihedral group
Dv of order 2v.

∃? SQS(v) invariant under Dv

No such SQS(8) (but ∃ SQS(8) on F3
2)

It may not be a good idea to stick to cyclic groups or dihedral
groups for assumed symmetry. (Quite a lot of work has been
done for cyclic case, nevertheless)
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SQS(v) as a (0, 1)-solution to a linear equation

B ∈
(

P

4

)

⊃ B

T ∈

(

P

3

)











{

1 T ⊂ B

0 T 6⊂ B















0
or
1



 =





1...
1





A solution is the characteristic vector of a subset B, forming SQS(v):

∀T ∈

(

P

3

)

, ∃!B ∈ B, T ⊂ B.
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SQS(v) invariant under G acting on P

B ∈
(

P

4

)

T ∈

(

P

3

)











{

1 T ⊂ B

0 T 6⊂ B















0
or
1



 =





1...
1





A permutation group G on P allows to collapse the matrix:
B ∈

(

P

4

)

/G

T ∈

(

P

3

)

/G











{

≥ 1 T ⊂ B

0 T 6⊂ B















0
or
1



 =





1...
1




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Collapsing
(

P
3

)

×
(

P
4

)

matrix by Dv

q
q qq A
AA

�
��

��HH q qq q
�� @@

6⊃diam.

isos.
q

qq A
AA

�
��

right
q
q

q
�
��

HH(

P

3

)























ordinary















0 · · ·1 · · ·0 0 · · ·0 ∗

· · ·
...

...
10 · · · · · · 0 0 · · ·0 ∗

· · ·
...

...
0 ∗ ∗





























1
—
0
or
1
—
0















=















1
...
1
...
1















collapse
=⇒

(

P

3

)

/Dv















0 · · ·1 · · · 0 0 · · · 0 ∗

· · ·
...

...
10 · · · · · · 0 0 · · · 0 ∗

· · ·
...

...
0 K ∗





























1
—
0
or
1
—
0















=















1
...
1
...
1














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Collapsing
(

P
3

)

×
(

P
4

)

matrix by Dv

(

P

4

)

/Dv

6⊃ diam.q qq q
�� @@

ordinary{

(

P

3

)

/Dv















0 · · ·1 · · · 0 0 · · · 0 ∗

· · ·
...

...
10 · · · · · ·0 0 · · · 0 ∗

· · ·
...

...
0 K ∗





























1
—
0
or
1
—
0















=















1
...
1
...
1















K has at most three 1’s in each row

K has exactly two 1’s in each column
(∀trapezoid⊃two triangles/≡)

K can be regarded as an incidence matrix of a graph
(columns=edges, rows=vertices)

Akihiro Munemasa (Tohoku University) Steiner quadruple systems RIMS 2009 11 / 14



Incidence matrix

edges

6⊃ diam.q qq q
�� @@

vertices=ordinary



 K









0
or
1



 =





1...
1





edges

vertices



 K









0
or
1



 =





1...
1



 ⇐⇒
1-factor
of the graph K

1-factor ⇐⇒ a subset of edges covering every vertex exactly once

Akihiro Munemasa (Tohoku University) Steiner quadruple systems RIMS 2009 12 / 14



Köhler (1979) P = {ξ | ξv = 1}

v ≡ 2 or 4 (mod 6)
T = { ordinary triangles ⊂ P}/cong.: vertices
E = { trapezoids 6⊃diam.}/cong.: edges
The Köhler graph G(Zv) is (T , E), K: its incidence matrix

A solution to


 K









0
or
1



 =





1
...
1





corresponds to a subset F of edges with

∀vertex ⊂ ∃!member of F .

called a 1-factor.

Theorem (Köhler)

∃1-factor in G(Zv) =⇒ ∃ SQS(v).
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∃1-factor in G(Zv) =⇒ ∃ SQS(v).

Piotrowski (1985)

∃1-factor in G(Zv) for infinitely many v

existence of a 1-factor in G(Zv) reduces to the case v = 2p, p:
odd prime

Still an open problem: Determine v such that ∃1-factor in G(Zv).
=⇒ Leads to a number theoretic problem.
Our approach:

A: abelian group of order v

define “isosceles”, “right” triangles in
(

A

3

)

define “kite”, “trapezoid” in
(

A

4

)

define the Köhler graph G(A) of A

Theorem (joint work with M. Sawa)

∃1-factor in G(A) =⇒ ∃ SQS(v).
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