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Definitions and Statement of the Problem

• Z4: the ring of integers modulo 4,

• Zn
4 : the free module of rank n over Z4,

• (x, y) =
∑n

i=1 xiyi, where x, y ∈ Zn
4 ,

• a submodule C ⊂ Zn
4 is called a code of length n over Z4,

or a Z4-code of length n,

• C is self-dual if C = C⊥, where
C⊥ = {x ∈ Zn

4 | (x, y) = 0 (∀y ∈ C)},
• the residue: Res(C) ⊂ Fn

2 (reduction Z4 → F2 mod 2).

Problem
Given C0 ⊂ Fn

2 , classify (up to monomial equivalence)
self-dual C ⊂ Zn

4 with Res(C) = C0.



Given C0 ⊂ Fn
2 , classify self-dual C ⊂ Zn

4 with

Res(C) = C0.

C: self-dual Z4-code =⇒ C0 = Res(C): doubly even.

Theorem (Rains, 1999)
Given a doubly even code C0 of length n, dimension k,

• the set of all self-dual Z4-codes C with Res(C) = C0 has
a structure as an affine space of dimension k(k + 1)/2
over F2,

• the group {±1}n o Aut(C0) acts as an affine
transformation group,

• two codes C, C ′ are equivalent if and only if they are in
the same orbit under this group.



The set of all self-dual Z4-codes C with

Res(C) = C0 has a structure as an affine space of

dimension k(k + 1)/2 over F2

Näıvely speaking, classifying such C amounts to enumerating
k × n binary matrices M such that[

A + 2M
2B

]
where A generates C0,

[
A
B

]
generates C⊥

0 ,

is self-dual. Among the 2kn matrices M , not all of them
generate a self-dual code, while some matrices generate the
same code as the one generated by some other matrix. This
reduces the number

2kn to 2k(k+1)/2.
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The group {±1}n o Aut(C0) acts as an affine

transformation group on an affine space of

dimension k(k + 1)/2

Theorem (improved version)
Given a doubly even code C0 of length n, dimension k,

• the set of all self-dual Z4-codes C with Res(C) = C0 has
a surjection onto an affine space of dimension at most
k(k + 1)/2 over F2,

• the group Aut(C0) acts as an affine transformation group,

• two codes C, C ′ are equivalent if and only if their images
are in the same orbit under this group.



Self-dual Z4-codes C with Res(C) = C0

Given a doubly even code C0 of length n, dimension k, with

generator matrix A, C⊥
0 is generated by

[
A
B

]
, set

• M = Mk×n(F2),

• V0 = {M ∈M | MAT + AMT = 0},
• W0: subspace of M generated by {M ∈M | MAT = 0}

and {AEii | i = 1, . . . , n}. Then W0 ⊂ V0.

V0/W0 3 M mod W0 7→
eq. class of

code generated by

[
Ã + 2M

2B

]
is well-defined. (Ã will be chosen appropriately)
Aut(C0) acts on V0/W0 as an affine transformation group, and
the orbits are the preimages of equivalence classes.



Aut(C0) acts on V0/W0

First, take a matrix Ã over Z4 such that

Ã mod 2 = A and ÃÃT = 0.

For each P ∈ Aut(C0), there exists a unique matrix
E1(P ) ∈ GL(k, F2) such that

AP = E1(P )A.

Also, there exists a matrix E2(P ) ∈M such that

2E2(P ) = E1(P )−1ÃP − Ã.



Aut(C0) acts on V0/W0

Theorem
The group Aut(C0) acts on V0/W0 by

P : V0/W0 3 M (mod W0)

7→ E1(P )−1MP + E2(P ) (mod W0) ∈ V0/W0,

where P ∈ Aut(C0). Moreover, there is a bijection

Aut(C0)-orbits on V0/W0 →
eq. class of

codes C with
Res(C) = C0,

M (mod W0) 7→
eq. class of

codes generated by

[
Ã + 2M

2B

]



Practical Implementation

Aut(C0) → AGL(V0/W0).

Since AGL(m, F2) ⊂ GL(1 + m, F2), we actually construct a
linear representation:

Aut(C0) → GL(1 + dim V0/W0, F2).

A straightforward implementation works provided

dim V0/W0 ≤ 20 plus alpha (about).



Enumeration of self-dual Z4-codes of length 16

• Pless–Leon–Fields (1997): 133 Type II Z4-codes of length
16,

• Harada–Munemasa (2009): 1372 Type I Z4-codes of
length 16.

Using Rains’ algorithm implemented by us, it took about 1
minute to enumerate all the 133 + 1372 = 1505 self-dual
Z4-codes of length 16, from the set of 146 doubly even codes
C0.
Computing time is roughly proportional to the size of the
affine space

|V0/W0| = 2dim V0/W0 ,

and the maximum value of dim V0/W0 in the above example is
22.



Toward the classification of extremal Type II codes

of length 24
A straightforward computation will not work if one wishes to
enumerate self-dual codes of length 24. For example, C0 =
extended Golay code, |V0/W0| = 255.
Actually, for Type II codes, it is enough to look at a subspace
U0 of V0, so that the search space has size

|U0/W0| = 244.

So we will have a matrix representation

M24 = Aut(C0) → GL(45, F2).

As an estimate:
244

|M24|
= 71856.7 . . .

but there are only 13 extremal Type II codes C with Res(C) =
extended Golay code.


