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Linear, Quadratic, and Cubic Forms over the

Binary Field

Linear form is a homogeneous polynomial of degree 1:
e.g. 2x1 − x2 + x3 + 3x4.

Quadratic Form is a homogeneous polynomial of degree 2:
e.g. x2

1 − x2x3 + 3x2
4.

Cubic Form is a homogeneous polynomial of degree 3:
e.g. x3

1 − x2
2x3 + 2x1x2x4.

The Binary Field is F2 = {0, 1} with addition and
multiplication defined by

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1



Polynomials and Functions

In high school mathematics, where polynomials are exclusively
used for calculus and analytic geometry,

Polynomials ≈ Functions

In abstract algebra (college level), a polynomial is a purely
algebraic object,

Functions ≈ Mappings

and a polynomial f(x) with real coefficients can be regarded
as a mapping R→ R. This means

some functions can be represented by a polynomial.



Linear Form as Polynomial

Linear form is a homogeneous polynomial of degree 1:
e.g. f(x1, x2, x3, x4) = 2x1 − x2 + x3 + 3x4.

f can be regarded as a polynomial in four indeterminates, or
as a mapping f : R4 → R with four variables or arguments.
Then f is a linear mapping:

f(x + y) = f(x) + f(y),

f(ax) = af(x),

where x = (x1, . . . , x4), y = (y1, . . . , y4), a ∈ R.
More generally, and conversely,. . .



Linear Form as Function

Let f : Rn → R be a mapping.
A theorem in elementary linear algebra says:

f satisfies
f(x + y) = f(x) + f(y),

f(ax) = af(x),

for all x, y ∈ Rn and a ∈ R
⇐⇒
∃a1, . . . , an ∈ R, ∀x = (x1, . . . , xn) ∈ Rn,

f(x) = a1x1 + · · ·+ anxn.



Vector Space over R

Standard linear algebra deals with vector spaces over R, not
necessarily of the form Rn, and linear mappings among them.

A vector space V is equipped with addition and scalar
multiplication, and is required to satisfy certain axioms. I
assume the audience is familiar with the concept of “basis”
and “subspace”.
If {b1, . . . , bn} is a basis of V , then f : V → R is linear if and
only if ∃a1, . . . , an such that

f(
n∑

i=1

xibi) = a1x1 + · · ·+ anxn.

Indeed, one can define ai = f(bi).



Polynomial Function on Vector Space

For a function f : V → R, let

g(x1, . . . , xn) = f(
n∑

i=1

xibi)

be the function with n variables defined by f and a basis
{b1, . . . , bn} of V .

f g is homogeneous of degree: f−1(0)
linear 1 hyperplane

quadratic 2 (quadratic) surface
cubic 3 (cubic) surface

This definition is independent of the choice of a basis.



Vector Space over F2 = {0, 1}

Fn
2 = {(x1, . . . , xn) | xi ∈ F2}

is a vector space over F2; it has entrywise addition and scalar
(0 and 1 only!) multiplication.

+ 0 1
0 0 1
1 1 0

All the standard concepts (basis, dimension, subspace, etc)
can be carried over and work without any change.

` : Fn
2 → F2, `(x1, . . . , xn) = x1 + x2 + · · ·+ xn

is a linear form. Its value is

`(x1, . . . , xn) =

{
0 if |{i | xi = 1}| : even,

1 if |{i | xi = 1}| : odd.

`−1(0) = Ker ` is a subspace of dimension n− 1.



Fn
2 as Power Set

|Fn
2 | = |{(x1, . . . , xn) | xi ∈ F2}| = 2n.

A vector space of dimension k over F2 has 2k elements.
There is a 1-1 correspondence

(1, 0, 1, 1, 0) ↔ {1, 3, 4}
x ∈ Fn

2 S ⊂ {1, . . . , n}
x → supp(x)

eS =
∑
i∈S

ei ← S

wt(x) = |S|
Characteristic Support

vector



Quadratic Form
On the subspace

W = Ker ` = {x ∈ Fn
2 | wt(x): even}

there is a quadratic form

q(x) = (
wt(x)

2
mod 2).

Why is this a quadratic form?
(Take a basis, then express q as a polynomial function in the
basis-coefficient, and see it is homogeneous of degree 2).
To do this, we need the interpretation of the addition via
support-characteristic vector correspondence.

sum symmetric difference
x + y ↔ (supp(x) ∪ supp(y)) \ (supp(x) ∩ supp(y))



q(x) = (wt(x)
2 mod 2) on W = Ker `

Let S4T denote the symmetric difference

S4T = (S ∪ T ) \ (S ∩ T ).

Then

|S4T | = |S ∪ T | − |S ∩ T | = |S|+ |T | − 2|S ∩ T |.

Since supp(x + y) = supp(x)4 supp(y),

wt(x + y) = wt(x) + wt(y)− 2 wt(x ∗ y),

where x ∗ y denotes the entrywise product.
× 0 1
0 0 0
1 0 1



wt(x + y) = wt(x) + wt(y)− 2 wt(x ∗ y)

wt(
m∑

i=1

bi) ≡
m∑

i=1

wt(bi)− 2
∑
i<j

wt(bi ∗ bj) (mod 4).

If bi ∈ W = Ker `, then 2|wt(bi), so

1

2
wt(

m∑
i=1

bi) ≡
m∑

i=1

1

2
wt(bi)−

∑
i<j

wt(bi ∗ bj) (mod 2).

q(
m∑

i=1

bi) =
m∑

i=1

q(bi) +
∑
i<j

(wt(bi ∗ bj) mod 2)



wt(x + y) = wt(x) + wt(y)− 2 wt(x ∗ y)

wt(
m∑

i=1

bi) ≡
m∑

i=1

wt(bi)− 2
∑
i<j

wt(bi ∗ bj) (mod 4).

If bi ∈ W = Ker `, then 2|wt(bi), so

1

2
wt(

m∑
i=1

bi) ≡
m∑

i=1

1

2
wt(bi)−

∑
i<j

wt(bi ∗ bj) (mod 2).

q(
m∑

i=1

xibi) =
m∑

i=1

q(xibi) +
∑
i<j

(wt(xibi ∗ xjbj) mod 2)

=
m∑

i=1

x2
i q(bi) +

∑
i<j

xixj(wt(bi ∗ bj) mod 2)

:homogeneous of degree 2 (Remark: 02 = 0, 12 = 1).



q(x) = (wt(x)
2 mod 2) on W = Ker `

|q−1(0)| = |{x ∈ W | q(x) = 0}|
= |{x ∈ Fn

2 | wt(x) ≡ 0 (mod 4)}|
= |{S ⊂ {1, . . . , n} | |S| ≡ 0 (mod 4)}|

=

(
n

0

)
+

(
n

4

)
+

(
n

8

)
+ · · · .

`−1(0) = Ker ` was a subspace, but q−1(0) is not.

• The largest dimension of subspaces contained in q−1(0) is
n
2
− 1 or bn

2
c, according as n ≡ 2, 4, 6 (mod 8) or not.

• Every subspace contained in q−1(0) is contained in such a
subspace of the largest dimension.

• In particular, q−1(0) is a union of subspaces of dimension
n
2
− 1 or bn

2
c.



Cubic Form

On the subspace W = Ker ` = `−1(0), there was a quadratic
form

q(x) = (
wt(x)

2
mod 2).

On any subspace U ⊂ q−1(0), there is a cubic form

c(x) = (
wt(x)

4
mod 2).

Why is this a cubic form?
(Take a basis, then express c as a polynomial function in the
basis-coefficient, and see it is homogeneous of degree 3).



wt(x + y) = wt(x) + wt(y)− 2 wt(x ∗ y)

wt(
m∑

i=1

bi) ≡
m∑

i=1

wt(bi)− 2
∑
i<j

wt(bi ∗ bj) (mod 4).

wt(
m∑

i=1

bi) ≡
m∑

i=1

wt(bi)− 2
∑
i<j

wt(bi ∗ bj)

+ 4
∑

i<j<k

wt(bi ∗ bj ∗ bk) (mod 8).

If bi ∈ U ⊂ q−1(0), then 4|wt(bi), so

c(
m∑

i=1

xibi) =
m∑

i=1

x3
i c(bi) +

∑
i<j

xix
2
j(

1

2
wt(bi ∗ bj) mod 2)

+
∑

i<j<k

xixjxk(wt(bi ∗ bj ∗ bk) mod 2)



c(x) = (wt(x)
4 mod 2)

|c−1(0)| = |{x ∈ q−1(0) | c(x) = 0}|
= |{x ∈ Fn

2 | wt(x) ≡ 0 (mod 8)}|
= |{S ⊂ {1, . . . , n} | |S| ≡ 0 (mod 8)}|

=

(
n

0

)
+

(
n

8

)
+

(
n

16

)
+ · · · .

q−1(0) had some nice properties, but little is known for c−1(0).



q−1(0) and c−1(0)

q−1(0) had some nice properties:

• The largest dimension of subspaces contained in q−1(0) is
n
2
− 1 or bn

2
c, according as n ≡ 2, 4, 6 (mod 8) or not.

• Every subspace contained in q−1(0) is contained in such a
subspace of the largest dimension.

Little is known for c−1(0).

• What is the largest dimension of subspaces contained in
c−1(0)?

• Not every subspace contained in c−1(0) is contained in
such a subspace of the largest dimension. That is, the
dimensions of maximal subspaces contained in c−1(0) is
not constant.

• Describe all the maximal subspaces contained in c−1(0).



A maximal subspace contained in c−1(0)

Take n = 15. Observe
(
6
2

)
= 15.

{1, 2, . . . , 15} ↔ {i, j} ⊂ {1, 2, . . . , 6}.

12 13 14 15 16 23 · · · 56
12 0 1 1 1 1 1 · · · 0
13 1 0 1 1 1 1 · · · 0
14 1 1 0 1 1 0 · · · 0
15 1 1 1 0 1 0 · · · 1
16 1 1 1 1 0 0 · · · 1

{
1 | ∩ | = 1

0 | ∩ | 6= 1

The row vectors span a 4-dimensional space U ⊂ c−1(0), and
this is maximal. Up to permutation of coordinates, this is the
unique maximal subspace contained in c−1(0).
But for larger n, the situation is different.



Conclusion

• This construction of maximal subspaces using
(
6
2

)
can be

generalized to
(
4k+2

2

)
for an arbitrary positive integer k.

I will talk more about it with its connection to other
mathematical objects in Friday’s colloquium.

• If you are interested in “linear algebra over F2,” try to
read introductory textbook on coding theory, especially
on “binary linear codes.”

Thank you very much for attending my talk.


