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Self-Dual Zk-Codes

• k ∈ Z, k ≥ 2.

• Zk: the ring of integers modulo k.

• (x, y) =
∑n

i=1 xiyi, where x, y ∈ Zn
k ,

• Euclidean weight: wt(x) =
∑n

i=1 x2
i ∈ Z, where

Zk = {0,±1,±2, . . . } is considered as ⊂ Z
• a submodule C ⊂ Zn

k is called a code of length n over
Zk, or a Zk-code of length n.

• C is self-dual if C = C⊥, where
C⊥ = {x ∈ Zn

k | (x, y) = 0 (∀y ∈ C)},
• For k even, C is Type II ⇐⇒ C = C⊥ and 2k|wt(x) for

all x ∈ C.



For k even, C is Type II ⇐⇒
C = C⊥ and wt(x) ≡ 0 (mod 2k).

A Type II code of length n exists if and only if 8|n.
For n = 8:

• k = 2: Binary Extended Hamming Code (unique).

• k = 4: Four Codes (Conway–Sloane, 1993).

• k = 6: Two Codes (Kitazume–Ooi, 2004).

• k = 8: (Dougherty–Gulliver–Wong, 2006, incomplete).

Mass formula (which gives the total number of Type II codes
of given length and k) is known for k = 2, 4, 6 but not known
for k = 8 until 2009 (previous talk).



New Method of Classifying Self-Dual and Type II

Codes Using Lattices

Proposed by Harada–Munemasa–Venkov (2009).

• π : Z → Zk: canonical surjection.

• π : Zn → Zn
k ⊃ C.

L =
1√
k
π−1(C) ⊂ Rn

• C = C⊥ =⇒ L: unimodular.

• C: Type II =⇒ L: even unimodular

Such lattices have been classified for n ≤ 24.
Example: n = 8: Z8 and E8.



L =
1√
k
π−1(C) ⊂ Rn

Example: n = 2, k = 2, C = 〈(1, 1)〉 ⊂ Z2
2.

L =
1√
2
{(x, y) ∈ Z2 | x ≡ y (mod 2)}.

L unimodular
⇐⇒ det(Gram matrix) = 1
⇐⇒ vol(fundamental domain) = 1

f1 = (
√

2, 0), f2 = (0,
√

2).



L ⊂ Rn: unimodular lattice

If L contains a k-frame F = {±f1, . . . ,±fn}, i.e.,

(fi, fj) = kδi,j,

then L ⊂ 1
k
ZF , so

C = L/ZF ⊂ 1

k
ZF/ZF ∼= Zn

k

and C is a self-dual code.
(If, moreover, L is even, then C is Type II).

• Knowledge of unimodular lattices can be used to classify
self-dual codes or Type II codes.

• The method does not require k to be a prime.



C ⊂ Zn
k , F ⊂ L ⊂ Rn

C 7→ 1√
k
π−1(C) : lattice

L,F 7→ L/ZF : code

The above correspondence gives, for a fixed lattice L:

{codes C with
1√
k
π−1(C) ∼= L}/(±1)-monomial equiv.

1:1↔ {k-frames of L}/ Aut(L)



L ⊂ Rn: unimodular lattice

Define a graph Γ

• vertices V (Γ) = {{±f} | f ∈ L, (f, f) = k}
• edges: {±f} ∼ {±f ′} ⇐⇒ (f, f ′) = 0

Then k-frames of L ↔ n-cliques (complete subgraph) in Γ,
and ∃ϕ : Aut(L) → Aut(Γ).

{codes C with
1√
k
π−1(C) ∼= L}/(±1)-monomial equiv.

1:1↔ {k-frames of L}/ Aut(L)
1:1↔ {n-cliques of Γ}/ϕ(Aut(L))



V (Γ) = {{±f} | f ∈ L, (f, f) = k}
How large is |V (Γ)|?
For example, for any n, there is a standard unimodular lattice
Zn, and it has a k-frame when n ≥ 4.

n 16 17 18 19 20

k = 4 14576 19057 24498 31027 38780

n 8 9 10 11 12 13 14

k = 6 1568 * * * 32208 * *
k = 8 4664 * 26010 * 126852 * 544726
k = 9 6056 17401 44330 104775 236380 515957
k = 10 7056 * 64532 * 412632 *

Remark: For prime k:
k = 2: n ≤ 34 by Bilous (2006),
k = 3: n ≤ 24 by Harada–Munemasa (2009),
k = 5: n ≤ 16 by Harada–Österg̊ard (2003),
k = 7: n ≤ 12 by Harada–Österg̊ard (2002).



Table

k = 4 1, 2, . . . , 15 16, 17, 18, 19
Conway–Sloane (1993)
Fields–Gaborit–Leon–Pless (1998)

k = 6 4 8
Dougherty–Harada–Solé (1999) 4|n

k = 8 2, 4 6, 8, 10, 12
Dougherty–Gulliver–Wong (2004) 2|n

k = 9 1, 2, . . . , 8 9, 10, 11, 12
Bealmaceda–Betty–Nemenzo (2009)

k = 10 2, 4, 6, 8, 10
2|n


