Weighing matrices of order 2(q+1) and weight q

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

> November 23, 2010 Oyama, Japan

Definition

A weighing matrix W of order n and weight k is an $n\times n$ matrix W with entries 1,-1,0 such that

$$WW^T = kI_n,$$

where I_n is the identity matrix of order n and W^T denotes the transpose of W.

We say that two weighing matrices W_1 and W_2 of order n and weight k are equivalent if there exist monomial matrices P and Q with $W_1 = PW_2Q$.

 $n = k \implies \mathsf{Hadamard} \ \mathsf{matrix}$

Chan-Roger-Seberry (1986)

Classified all weighing matrices of weight $k \leq 5$.

In particular, there are two weighing matrices of order 12 and weight 5, up to equivalence.

However, there is another one, discovered by Harada and A.M. recently, using the classification of self-dual codes of length 12 over \mathbb{F}_5 .

Chan-Roger-Seberry (1986) missed:

U	+	+	+	+	+	U	U	U	U	U	U
+	+	0	0	_	0	0	0	_	+	0	0
0	+	0	0	0	_	_	0	+	0	_	0
0	+	_	0	0	0	+	0	0	_	0	+
_	+	0	_	0	0	0	0	0	0	+	_
0	0	0	_	+	0	_	0	_	0	0	+
0	0	0	0	0	0	0	_	_	_	_	_
0	0	_	+	0	0	_	_	0	0	+	0
_	0	+	0	_	0	0	_	0	0	0	+
+	0	0	_	0	+	0	_	+	0	0	0
0	0	0	0	+	_	+	_	0	+	0	0

Inner product on \mathbb{F}_5^2 over \mathbb{F}_5

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2.$$

We change

$$1 \rightarrow +, \quad 4 \rightarrow -, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0$$

Replace

$$1 \rightarrow +, \quad 4 \rightarrow -, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0$$

to obtain A_2 .

Replace

$$1 \rightarrow +, \quad 4 \rightarrow -, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0$$

to obtain A_3 (which is the same as A_2).

Replace

$$1 \rightarrow +, \quad 4 \rightarrow -, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0$$

to obtain A_4 (which is the same as $-A_1$).

Notation

- q: a prime power, $q \equiv 1 \pmod{4}$ (ex. q = 5)
- F = GF(q): a finite field, $F^{\times} = \langle a \rangle$ (ex. a = 2)
- V: a vector space of dimension m over F, m>1 (ex. m=2)
- $V^{\sharp} = V \setminus \{0\}$
- $n = 2 \cdot (q^m 1)/(q 1)$ (ex. n = 12)
- $X = V^{\sharp}/\langle a^2 \rangle = \{\langle a^2 \rangle x_i \mid 1 \le i \le n\} \ (|X| = n)$
- $B: V \times V \to F$: nondegenerate bilinear form (ex. $B(x,y) = x_1y_1 + x_2y_2$)

Define $n \times n$ matrix W by

$$W_{ij} = \begin{cases} 1 & \text{if } B(x_i, x_j) \in \langle a^4 \rangle, \text{ (ex. } \in \{1\}) \\ -1 & \text{if } B(x_i, x_j) \in a^2 \langle a^4 \rangle, \text{ (ex. } \in \{4\}) \\ 0 & \text{otherwise.} \end{cases}$$

Main result

- q: a prime power, $q \equiv 1 \pmod{4}$
- F = GF(q): a finite field, $F^{\times} = \langle a \rangle$
- V: a vector space of dimension m over F, m > 1
- $V^{\sharp} = V \setminus \{0\}$
- $n = 2 \cdot (q^m 1)/(q 1)$
- $X = V^{\sharp}/\langle a^2 \rangle = \{\langle a^2 \rangle x_i \mid 1 \le i \le n\} \ (|X| = n)$
- $B: V \times V \to F$: nondegenerate bilinear form

$$W_{ij} = \begin{cases} 1 & \text{if } B(x_i, x_j) \in \langle a^4 \rangle, \\ -1 & \text{if } B(x_i, x_j) \in a^2 \langle a^4 \rangle, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem

W is a weighing matrix of order n and weight q^{m-1} .

$$W_{ij} = \pm 1 \iff B(x_i, x_j) \in \langle a^2 \rangle$$

$$\text{weight} = |\{j \mid 1 \le j \le n, \ B(x_i, x_j) \in \langle a^2 \rangle\}|$$

$$= \sum_{i=1}^{n} \frac{1}{|\langle a^2 \rangle|} |\{ y \in \langle a^2 \rangle x_j \mid B(x_i, y) \in \langle a^2 \rangle \}|$$

$$= \sum_{j=1}^{n} \frac{|\langle a^2 \rangle|}{|\langle a^2 \rangle|} |\{y \in \langle a^2 \rangle x_j\}|$$

$$= \frac{1}{|a|} |\langle a^2 \rangle|^n$$

$$= \frac{1}{|a|} |a| \{ u \in \langle a^2 \rangle \}$$

$$= \frac{1}{|\langle a^2 \rangle|} \left| \bigcup_{i=1}^n \{ y \in \langle a^2 \rangle \} \right|$$

 $= q^{m-1}$

$$= \frac{1}{|\langle a^2 \rangle|} \left| \bigcup_{j=1}^n \{ y \in \langle a^2 \rangle x_j \mid B(x_i, y) \in \langle a^2 \rangle \} \right|$$

$$= \frac{1}{|\langle a^2 \rangle|} \left| \bigcup_{j=1}^{n} \{ y \in \langle a \rangle \right| \right|$$

$$= \frac{1}{|\langle a^2 \rangle|} \Big| \bigcup_{j=1}^{\infty} \{ y \in \langle a^2 \rangle \}$$

$$= \frac{1}{|\langle a^2 \rangle|} \bigcup_{j=1}^{\infty} \{ y \in \langle a^2 \rangle \}$$

$$j \in \langle a \rangle$$

 $= \frac{1}{|\langle a^2 \rangle|} \sum_{|x| < 2^{-1}} |\{y \in V \mid B(x_i, y) = b\}|$

 $= \frac{1}{|\langle a^2 \rangle|} |\langle a^2 \rangle| |\{ y \in V \mid B(x_i, y) = 0 \}|$

$$\in \langle a^2 \rangle x_j \mid B(x_i,$$

$$ax_j \mid B(x_i, y_i)$$

$$(a /x_j \mid D(x_i, y))$$

$$= \frac{1}{|\langle a^2 \rangle|} |\{ y \in V^{\sharp} \mid B(x_i, y) \in \langle a^2 \rangle \}|$$

$$\langle v^2 \rangle \} |$$

$$|a^2\rangle\}|$$

$$h \neq i \implies \sum_{j=1}^{n} W_{hj} W_{ij} = 0$$

can be proved in a similar manner.

$$\langle a^4\rangle x_h=\langle a^4\rangle x_i\implies W_{hj}W_{ij}=0 \text{ for all } j.$$
 If $\langle a^4\rangle x_h\neq \langle a^4\rangle x_i$, then

#+ =
$$|\{j \mid W_{h,j}W_{i,j} = 1\}|$$

#- = $|\{j \mid W_{h,j}W_{i,j} = -1\}|$

are both equal to

$$\frac{q^{m-2}(q-1)}{4}.$$

(ex. 1 if
$$q = 5$$
 and $m = 2$.)

Chan-Roger-Seberry (1986) missed:

+	0	+	0	0	_	0	0	0	_	+	0
0	+	+	+	+	+	0	0	0	0	0	0
+	+	0	0	_	0	0	0	_	+	0	0
0	+	0	0	0	_	_	0	+	0	_	0
0	+	_	0	0	0	+	0	0	_	0	+
_	+	0	_	0	0	0	0	0	0	+	_
0	0	0	_	+	0	_	0	_	0	0	+
0	0	0	0	0	0	0	_	_	_	_	_
0	0	_	+	0	0	_	_	0	0	+	0
_	0	+	0	_	0		_	0	0	0	+
+	0	0	_	0	+	0	_	+	0	0	0
0	0	0	0	+	_	+	_	0	+	0	0

Chan-Roger-Seberry (1986) missed:

+	0	+	0	0	_	0	0	0	_	+	0
0	+	+	+	+	+	0	0	0	0	0	0
+	+	0	0	_	0	0	0	_	+	0	0
0	+	0	0	0	_	_	0	+	0	_	0
0	+	_	0	0	0	+	0	0	_	0	+
_	+	0	_	0	0	0	0	0	0	+	_
0	0	0	_	+	0	_	0	_	0	0	+
0	0	0	0	0	0	0	_	_	_	_	_
0	0	_	+	0	0	_	_	0	0	+	0
_	0	+	0	_	0	0	_	0	0	0	+
+	0	0	_	0	+	0	_	+	0	0	0
0	0	0	0	+	_	+	_	0	+	0	0