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Main result

The Leech lattice has

1+5+29+171+755+1880+1903 (corrected after the talk)

4-frames.

• What (Definitions)

• Where (History)

• Why (Motivations)

• How (Computation)



The Leech lattice L

A Z-submodule L of rank 24 in R24 with basis B characterized
by the following properties of its Gram matrix G = BBT :

• detG = 1,

• Gij ∈ Z,

• Gii ∈ 2Z
• rootless: ∀x ∈ L, ‖x‖2 6= 2.

unique up to isometry in R24.



McKay’s construction of the Leech lattice (1972)

• A Hadamard matrix of order n is a square matrix with
entries ±1 satisfying HHT = nI.

• When n = 12, there exists a unique (up to equivalence)
Hadamard matrix H, and one may take H with
H +HT = −2I.

L =
1

2
SpanZ

[
I H − I
0 4I

]
⊂ 1

2
Z24 ⊂ R24

L ⊃ 1

2
SpanZ

[
4I 4(H − I)
0 4I

]
= SpanZ 2I = 2Z24.



L = Leech lattice

minL = min{‖x‖2 | 0 6= x ∈ L} = 4 (rootless).

#{x ∈ L | ‖x‖2 = 4} = 196560

A 4-frame of L is {±f1,±f2, . . . ,±f24} with (fi, fj) = 4δij.
We also call the sublattice F =

⊕24
i=1 fi a 4-frame.

Example:

L ⊃ 1

2
SpanZ

[
4I 4(H − I)
0 4I

]
= SpanZ 2I = 2Z24.

There are many others, but certainly finite. Equivalence by
isometry group of L.

F ⊂ L ⊂ 1

4
F.



F ⊂ L ⊂ 1
4F

L/F ⊂ 1
4
F/F ∼= Z24

4 .
A code over Z4 of length n is a submodule of Zn

4 .

F → C = L/F ⊂ Z24
4 ,

Conversely, given a code C over Z4 of length 24, there is a
frame F ⊂ L s.t. C = L/F if and only if

(1) C is self-dual,

(2) ∀x ∈ C, the Euclidean weight wt(x) is divisible by 8,

(3) min{wt(x) | x ∈ C, x 6= 0} = 16.

A code C is called type II if (1) and (2) holds. If (1), (2) and
(3) hold, then C is called an extremal type II code over Z4 of
length 24.



F → C = L/F ⊂ Z24
4 : Equivalence

Consider another F ′ → C ′ = L/F ′ ⊂ Z24
4 .

Then

F ∼= F ′ under AutL

⇐⇒ C and C ′ are monomially equivalent.

Classification of 4-frames in L ⇐⇒ classification of extremal
type II code over Z4 of length 24.

Example of an extremal type II code over Z4 of length 24:
Bonnecaze–Solé–Calderbank (1995): Hensel lifted Golay code.



Residue code = C mod 2 = Res(C)

If C is a code over Z4, then its modulo 2 reduction is called
the residue code and is denoted by

Res(C) ⊂ Fn
2 .

Example: For the Hensel-lifted Golay code C, Res(C) is the
Golay code.

C : type II of length n

=⇒ Res(C) is a doubly even binary code containing 1

=⇒ 8|n.



Frame of L → Virasoro Frame of V \

{Virasoro frames of V \}
difficult

↑ DMZ

{frames of L} L/F mod 2→


doubly even C
len = 24, 124 ∈ C
minC⊥ ≥ 4
easily enumerated


DMZ = Dong–Mason–Zhu (1994)



Frame of L → Virasoro Frame of V \

{Virasoro frames of V \}
difficult

str→


triply even D
len = 48, 148 ∈ D
minD⊥ ≥ 4


↑ DMZ ↑ D (doubling)

{frames of L} L/F mod 2→


doubly even C
len = 24, 124 ∈ C
minC⊥ ≥ 4
easily enumerated


Lam–Yamauchi (2008): the diagram commutes, and

DMZ({frames of L}) (⊂)
= str−1(D({doubly even})).



Determine {frames of L}, with the help of the map

{frames of L} L/F mod 2→


doubly even C
length = 24, 124 ∈ C
minC⊥ ≥ 4
easily enumerated


F ⊂ L ⊂ 1

4
F  C = L/F ⊂ Z24

4  C = L/F mod 2.
For each C ∈ RHS, classify F such that Res(L/F ) ∼= C.

The map F 7→ L/F mod 2 is neither injective nor surjective.
Calderbank–Sloane (with Young) (1997):
{doubly even self-dual codes} ⊂ image.
The image was determined by Harada–Lam–M., but not
preimages.
Rains (1999) determined the preimage for C = Golay.



• (x, y) =
∑n

i=1 xiyi, where x, y ∈ Zn
4 ,

• a code of length n over Z4 is a submodule C ⊂ Zn
4 ,

• C is self-dual if C = C⊥, where
C⊥ = {x ∈ Zn

4 | (x, y) = 0 (∀y ∈ C)},
• the residue: Res(C) ⊂ Fn

2 (reduction Z4 → F2 mod 2).

• For u ∈ Zn
4 ,

wt(u) =
n∑

i=1

u2i ,

where we regard ui ∈ {0, 1, 2,−1} ⊂ Z. A code C ⊂ Zn
4

is type II if C is self-dual and 8|wt(u) for all u ∈ C.

• Conway–Sloane (1993): 4 type II codes of length 8

• Pless–Leon–Fields (1997): 133 type II codes of length 16



The set of all type II Z4-codes C with Res(C) = C

has a structure as an affine space of dimension

(k − 2)(k + 1)/2 over F2

Classifying such C amounts to enumerating k × n binary
matrices M such that[
A+ 2M

2B

]
, where [A] generates C,

[
A
B

]
generates C⊥,

generates a type II code.

Among the 2kn matrices M , not all of them generate a
self-dual code, while some matrices generate the same code as
the one generated by some other matrix. This reduces the
number

2kn to 2(k−2)(k+1)/2.



Given C ⊂ Fn2 , classify type II codes C ⊂ Zn4 with

Res(C) = C.

Note: C: type II Z4-code =⇒ Res(C): doubly even, 3 1.

Theorem (Rains, 1999)
Given a doubly even code C of length n, dimension k, 3 1.

• the set of all type II Z4-codes C with Res(C) = C has a
structure as an affine space of dimension
(k − 2)(k + 1)/2 over F2 (due to Gaborit, 1996),

• the group {±1}n o Aut(C) acts as an affine
transformation group,

• two codes C, C ′ are equivalent if and only if they are in
the same orbit under this group.



Given C ⊂ Fn2 , classify type II codes C ⊂ Zn4 with

Res(C) = C.

Note: C: type II Z4-code =⇒ Res(C): doubly even, 3 1.

Theorem (Rains, 1999)
Given a doubly even code C of length n, dimension k, 3 1.

• the set of all type II Z4-codes C with Res(C) = C has a
structure as an affine space of dimension
(k − 2)(k + 1)/2 over F2 (due to Gaborit, 1996),

• the group {±1}n o Aut(C) acts as an affine
transformation group,

• two codes C, C ′ are equivalent if and only if they are in
the same orbit under this group.



Given C ⊂ Fn2 , classify type II codes C ⊂ Zn4 with

Res(C) = C.

Note: C: type II Z4-code =⇒ Res(C): doubly even, 3 1.
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The group {±1}n o Aut(C) acts as an affine

transformation group on an affine space of

dimension (k − 2)(k + 1)/2

Theorem (improved version)
Given a doubly even code C of length n, dimension k,
containing 1n,

• the set of all type II Z4-codes C with Res(C) = C has a
surjection onto an affine space of dimension at most
(k − 2)(k + 1)/2 over F2, (e.g. 65→ 44)

• the group Aut(C) acts as an affine transformation group,

• two codes C, C ′ are equivalent if and only if their images
are in the same orbit under this group.



Type II Z4-codes C with Res(C) = C
Given a doubly even code C of length n, dimension k, with

generator matrix [A], C⊥ is generated by

[
A
B

]
, set

M = Matk×n(F2),

U0 = {M ∈M |MAT + AMT = 0,

Diag(AMT ) + Diag(1MT ) = 0},
W0 = 〈{M ∈M |MAT = 0}, {AEii | 1 ≤ i ≤ n}〉,
U = U0 ⊕ F2,

W = W0 ⊕ {0}.

U0/W0 3M (mod W0) 7→
eq. class of

code generated by

[
Ã+ 2M

2B

]
is well-defined. (Ã will be chosen appropriately)
Aut(C) acts on U0/W0 as an affine transformation group, and
the orbits are the preimages of equivalence classes.



Aut(C) acts on U0/W0

First, take a matrix Ã over Z4 such that

Ã mod 2 = A and ÃÃT = 0,

weight of rows of Ã ≡ 0 (mod 8)

∀P ∈ Aut(C), ∃E1(P ) ∈ GL(k,F2) such that

AP = E1(P )A.

and ∃E2(P ) ∈M such that

2E2(P ) = E1(P )
−1ÃP − Ã.

Then
P :M 7→ E1(P )

−1MP + E2(P ).



Aut(C) acts on U0/W0

Theorem
The group Aut(C) acts on U0/W0 by

P : U0/W0 3M (mod W0)

7→ E1(P )
−1MP + E2(P ) (mod W0) ∈ U0/W0,

where P ∈ Aut(C). Moreover, there is a bijection

Aut(C)-orbits on U0/W0 →
eq. class of

codes C with
Res(C) = C,

M (mod W0) 7→
eq. class of

codes generated by

[
Ã+ 2M

2B

]



Practical Implementation

Aut(C)→ AGL(U0/W0).

Since AGL(m,F2) ⊂ GL(1 +m,F2), we actually construct a
linear representation:

Aut(C)→ GL(1 + dimU0/W0).

A straightforward implementation works provided

dimU0/W0 ≤ 26 (depending on available memory)

which is the case if dimC ≤ 10.

dim 6 7 8 9 10 11 12
# 1 7 32 60 49 21 9



If dimU0/W0 is large

A straightforward computation will not work if dimC = 11 or
12. For example, C = extended Golay code, dimU0/W0 = 44.
So we will have a matrix representation

M24 = Aut(C)→ GL(45,F2).

As an estimate:
244

|M24|
= 71856.7 . . .

but there are only 13 extremal type II codes C with Res(C) =
Golay code.



C = Golay code

M24 → AGL(44, 2)→ GL(45, 2)

acts on a hyperplane H of F45
2 , and

orbits of M24 on H ↔ type II codes C with Res(C) = C.

There are 244 elements to examine for extremality.
We need to extract only extremal codes and then classify up
to equivalence.
Rains (1999) avoided this, instead classified self-dual codes of
lengths 22, 23, then building up from these. (limitation to
Golay case)



{C: type II, Res(C) = Golay}/{±1} ∼= F44
2

For each octad x ∈ C, consider the subset

H(x) = {C | Res(C) = C, C: type II,

∃v ∈ C, wt(v) = 8, v mod 2 = x}.

x = (111111110000 · · · 0000), octad,

v = (111111110000 · · · 0000), weight 8,

v′ = (111111112200 · · · 0000), weight 16

v ∈ C =⇒ C is not extremal.

Every member of H(x) has minimum Euclidean weight 8
(non-extremal).
H(x) is a subspace of codimension 4.



Another trick is to use a subgroup to classify up to equivalence
using a submodule, then later classify a manageable size of
representatives by M24. Note that M24 does not have a
submodule of dimension less than 44 in M24 → GL(45, 2).
We recover

• Rains (1999): there are exactly 13 extremal type II codes
C s.t. Res(C) is the binary extended Golay code.

We can modify slightly for C 6= Golay code. Numbers of
doubly even codes C ⊂ F24

2 containing 1 and C⊥ has
minimum weight ≥ 4.

dim 6 7 8 9 10 11 12
# 1 7 32 60 49 21 9



F → C = L/F → Res(C)

• Rains (1999): there are exactly 13 extremal type II codes
C s.t. Res(C) is the binary extended Golay code.

• Harada–Lam–M. there is a unique extremal type II code C
s.t. dimRes(C) = 6 (This is related to the code used by
Miyamoto (2004) to construct V \).

dim 6 7 8 9 10 11 12
# 1 7 32 60 49 21 9
# C 1 5 29 171 755 1880 1903

1 13
(corrected after the talk)


