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Eigenvalues of Graphs

• All graphs in this talks are finite, undirected and simple.

• Eigenvalues of a graph G are the eigenvalues of its
adjacency matrix A(G):

A(G)x,y =

{
1 if x and y are adjacent,

0 otherwise.

• Spec(G) = the multiset of eigenvalues of G.

• λmin(G) = the smallest eigenvalue of G.

• λmax(G) = the largest eigenvalue of G.

• The degree of a vertex x in G is the number of vertices
adjacent to x, and is denoted by d(x).

• dmin(G) ≤ d(G) ≤ λmax(G) ≤ dmax(G).



Example: a path of length 2 •—•—•
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λmin(G) = the smallest eigenvalue

For bipartite graphs

• Spec(G) = − Spec(G)

• λmin(G) = −λmax(G)

In general, if we assume G is connected.

G has at least 2 vertices

=⇒ G has at least 1 edge

=⇒ A(G) ⊃
[
0 1
1 0

]
as a principal submatrix

=⇒ λmin(G) ≤ −1.

Equality holds if and only if G is complete.



Gn = Kn+2− edge

• Kn = complete graph with n vertices

• Jn = n× n matrix with all the entries 1

• A(Kn) = Jn − In.

A(Gn) =

[
O2 1
1 A(Kn)

]

λmin(Gn) ≥ λmin(A(Gn)− Jn)

= λmin

([
−J2 O
O −In

])
= −2.

In fact, λmin(Gn) → −2 as n →∞, as we shall see. Set
µn := −λmin(Gn) ≤ 2. Then µn > 1.



−λmin(G) = min{µ ∈ R>0 | A(G) + µIn ≥ 0}
Gn = Kn+2− edge. µn := −λmin(Gn). Then
A(Gn) + µnIn ≥ 0, 1 < µn ≤ 2.
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where ñ is slightly larger than n; ñ
n
→ 1.

[
1 1 − 2

n

]  µn 0 n
0 µn n
n n ñ2
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implies 2µn − 8 + 4 ñ
n
≥ 0,

lim
n→∞

λmin(Gn) = lim
n→∞

(−µn) ≤ −2.



Gn = Kn+2− edge

Gn and Kn+2 differ only by an edge, but their smallest
eigenvalues differ as n →∞:

λmin(Gn) ↓ −2 while λmin(Kn+2) = −1.

Note dmin(Gn) = n.

Theorem (Hoffman (1977))
If {Hn}∞n=1 is a sequence of graphs with dmin(Hn) →∞,
λ = lim

n→∞
λmin(Hn) exists and λ < −1, then λ ≤ −2.



Woo and Neumaier (1995)

Definition
A Hoffman graph H is a graph (V, E) whose vertex set V
consists of “slim” vertices and “fat” vertices, satisfying the
following conditions:

1. every fat vertex is adjacent to at least one slim vertex,

2. fat vertices are pairwise non-adjacent.

A(H) =

( slim fat

A C
CT 0

)
=

 0 0 1
0 0 1
1 1 0

.

λmin(H) := −min{µ ∈ R>0 |
(

A + µI C
CT 0

)
≥ 0} = −2



Hoffman’s limit theorem

Theorem
Let H be a Hoffman graph. Let Hn be the ordinary graph
obtained from H by replacing every fat vertex f of H by a
n-clique K(f), and joining all the neighbors of f with all the
vertices of K(f) by edges. Then

λmin(Hn) ≥ λmin(H),

lim
n→∞

λmin(Hn) = λmin(H).

Hn = H =



Hn = Kn+4 − 2 disjoint edges
The corresponding Hoffman graph has adjacency matrix O2 J2 1

J2 O2 1
1 1 0


Since [

A + µI C
CT 0

]
≥ 0 ⇐⇒ A + µI + CCT ≥ 0,

lim
n→∞

λmin(Hn) = λmin(H) = −µ

where µ = smallest µ with µI2 O2 1
O2 µI2 1
1 1 0

 ≥ 0 ⇐⇒
[

µI2 − J2 O2

O2 µI2 − J2

]
≥ 0



The smallest eigenvalue of the Hoffman graph

is −µ, where µ is the smallest real number µ with µI2 O2 1
O2 µI2 1
1 1 0

 ≥ 0 ⇐⇒
[

µI2 − J2 O2

O2 µI2 − J2

]
≥ 0

⇐⇒ µI2 − J2 ≥ 0 ⇐⇒
[

µI2 1
1 0

]
≥ 0

Same smallest eigenvalue as



Sum

=
⊎

Definition
Let H1 and H2 be two non-empty induced Hoffman subgraphs
of H. We write H = H1 ] H2, if

1. V (H) = V (H1) ∪ V (H2);

2. {Vs(H
1), Vs(H

2)} is a partition of Vs(H);

3. if x ∈ Vs(H
i), y ∈ Vf (H) and x ∼ y, then y ∈ Vf (H

i);

4. if x ∈ Vs(H
1), y ∈ Vs(H

2), then x and y have at most
one common fat neighbor, and they have one if and only
if they are adjacent.

If H = H1 ] H2 for some non empty subgraphs H1 and H2,
then we call H decomposable.



] and λmin

Theorem

λmin(H
1 ] H2) = min{λmin(H

1), λmin(H
2)}.

• Because of this, the smallest eigenvalues of Hoffman
graphs are easier to investigate than ordinary graphs.

• Hoffman graphs can be thought as sequence of ordinary
graphs with increasing size of cliques.

• By Hoffman’s limit theorem, the smallest eigenvalue of a
Hoffman graph is a limit point of the smallest eigenvalues
of ordinary graphs.

• There is no Hoffman graph with smallest eigenvalue
between −1 and −2. The next largest possible smallest
eigenvalue of a Hoffman graph is −1−

√
2.



−1−
√

2

Theorem (Hoffman (1977))
If {Hn}∞n=1 is a sequence of graphs with dmin(Hn) →∞,
λ = lim

n→∞
λmin(Hn) exists and λ < −2, then λ ≤ −1−

√
2.

Theorem (Woo and Neumaier (1995))
If {Hn}∞n=1 is a sequence of graphs with dmin(Hn) →∞,
λ = lim

n→∞
λmin(Hn) exists and λ < −1−

√
2, then λ ≤ α,

where α is the smallest root of x3 + 2x2 − 2x− 2.



The smallest root of x3 + 2x2 − 2x− 2
is the eigenvalue of the Hoffman graph

Every Hoffman graph with smallest eigenvalue at least −2 is
obtained by taking sums and subgraphs from just two Hoffman
graphs, provided every slim vertex has at least one fat
neighbor:

Every graph with smallest eigenvalue at least −2 with
sufficiently large minimum degree is represented by a root
system An or Dn.



Representation of a graph
Definition
A representation of norm m of a graph G = (V, E) is a
mapping φ : V → Rn such that

(φ(x), φ(y)) =


m if x = y ∈ V ,

1 if x and y are adjacent,

0 otherwise.

Clearly, G has a representation of norm m iff λmin(G) ≥ −m.
So λmin(G) ≥ −2 =⇒ G is represented by a root system An,
Dn or En.
We wish to investigate limit points of the smallest eigenvalues
of graphs between −2 and −3. To do this, we need to
investigate Hoffman graphs with the smallest eigenvalue
between −2 and −3.



Theorem
Let H = (V, E) be a Hoffman graph with λmin(H) ≥ −3.
Suppose

1. every slim vertex has at least one fat neighbor.

2. two distinct slim vertices have at most one common fat
neighbor

Then there is a mapping φ : Vs → Rn such that (φ(x), φ(y))

=



2 if x = y, and x has a unique fat neighbor

1 if x = y, and x has two fat neighbors

1 if x and y are adjacent, 6 ∃ common fat neighbor

−1 if x and y are not adjacent, ∃ common fat neighbor

0 otherwise.

In particular, the image of φ generates a orthogonal direct sum
of the standard lattices Zn and root lattices An, Dn, En.


