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Group Theory

Starting from very small set of axioms

• · : G×G → G, (a, b) 7→ a · b,
• associativity: (a · b) · c = a · (b · c),
• ∃ identity 1 ∈ G, a · 1 = 1 · a = a,

• ∃ inverse: ∀a ∈ G, ∃b ∈ G, a · b = b · a = 1.

The goal of finite group theory is to understand the set of all
finite G satisfying the axioms, in some reasonable manner.



Finite Group Theory

Finite group theory has its origin in the remarkable work of
É. Galois who proved that the occurrence of a non-abelian
simple group caused impossibility of solvability by radical of
polynomial equations of degree ≥ 5.

• A group G is simple if 6 ∃ normal subgroup N with
{1} 6= N 6= G,

• N is normal in G ⇐⇒ ∀a ∈ G, aN = Na,

• Example: A5 = symmetry group of icosahedron

Burnside (1915) further developed finite group theory.



Finite Simple Groups
• Chevalley (1955) systematically constructed finite groups

of Lie type. Steinberg, Ree, Suzuki found more families.

There are 26 sporadic ones.
• E. Mathieu (1861, 1873), E. Witt (1938): (Aut(Steiner

system S(5, 8, 24)) = M24), M.J.E. Golay (1949):
(Aut(Golay code) = M24)

• B. Fischer, R. Griess (1982): The Monster M, I. Frenkel,
J. Lepowsky and A. Meurman (1988): Aut(V \) = M.
V \ = moonshine vertex operator algebra (VOA).

The smallest among 26 is the Mathieu group M11 of order

11 · 10 · 9 · 8 = 7920,

the largest is M of order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71



Decompositions of V \

V \ =
∞⊕

n=0

Vn

infinite sum of finite-dimensional subspaces.

dim V0 = 1, dim V1 = 0,

V2 = Griess algebra, dim V2 = 196884.

j(τ) =
1

q
+ 744 + 196884q + · · ·

This coincidence lead to Conway–Norton conjecture, proved by
R. Borcherds (1992).
The smallest matrix representation of M has dimension
196883. R. Wilson found an explicit 196882-dimensional
matrix representation of M over F2 = {0, 1} = Z/2Z.



Decompositions of V \

Instead of

V \ =
∞⊕

n=0

Vn

infinite sum of finite-dimensional subspaces,

V \ =
⊕

α∈F48
2

V α

finite sum of infinite-dimensional subspaces.
Lam–Yamauchi (2008): every Virasoro frame (certain
subalgebra of V \) gives rise to such a decomposition.

D = {α ∈ F48
2 | V α 6= 0}

is called the structure code of the Virasoro frame.
There are only finitely many Virasoro frames, and D is
invariant under M.



Code
Let m be an integer (actually we need only m = 2 (binary)
and m = 4).
A subgroup C ⊂ (Z/mZ)n is called a code of length n over
Z/mZ. The dual C⊥ of a code C is

C⊥ = {x ∈ (Z/mZ)n | (x, y) = 0 (∀y ∈ C)}.
• m = 4, C ⊂ (Z/4Z)n is type II if
C = C⊥,

∑n
i=1 x2

i ≡ 0 (mod 8) for all x ∈ C,
and for n = 24, C is extremal if

∑n
i=1 x2

i > 8,

• m = 2, C ⊂ (Z/2Z)n is doubly even if
wt(x) = |{i | xi = 1}| ≡ 0 (mod 4) for all x ∈ C,

• m = 2, D ⊂ (Z/2Z)n is triply even if
wt(x) = |{i | xi = 1}| ≡ 0 (mod 8) for all x ∈ D.

Equivalence: permutation of coordinates, and multiplication by
−1 on some coordinates (m = 4).



Factorization of the polynomial X23 − 1

(X − 1)(X22 + X21 + · · ·+ X + 1) over Z

= (X − 1)(X11 + X10 + · · ·+ 1)

× (X11 + X9 + · · ·+ 1) over F2

= (X − 1)(X11 −X10 + · · · − 1)

× (X11 + 2X10 −X9 + · · · − 1) over Z/4Z

(by Hensel’s lemma).



X23 − 1 = (X − 1)f (X)g(X) over Z/4Z
An extremal type II code of length 24 over Z/4Z is generated
by the rows of:

1 f(X)

1 f(X)

1 f(X)
...

. . .

 23× 24 matrix
Bonnecaze-Calderbank-Solé (1995)
(construction of the Leech lattice)

f(X) = f(X) mod 2. Golay code (a doubly even code of
length 24) is generated by the rows of:

1 f(X)

1 f(X)

1 f(X)
...

. . .

 over F2

(mod 2 reduction)



Codes and Virasoro frames

Theorem (Dong–Mason–Zhu (1994))

{extremal type II code of length 24 over Z/4Z }
→ {Virasoro frames V \}

Theorem (Lam–Yamauchi (2008))

{Virasoro frames of V \}
str→ {binary triply even codes of length 48} V \ =

⊕
α∈D

V α

• Actually these mapping induce mappings of equivalence
classes.

• What happens if we compose these two mappings?



Composition of the two mappings gives a mapping

from codes to codes

{Virasoro frames of V \}
difficult

str→


binary
triply even codes
of length 48


↑ DMZ

extremal type II codes
of length 24
over Z/4Z


There must be a easier description of the composition
mapping.



Commutative Diagram

Lam–Yamauchi (2008): str ◦ DMZ = D ◦ Res.

{Virasoro frames of V \}
difficult

str→


binary
triply even codes
of length 48


↑ DMZ ↑ D (doubling)

extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24





Res(C) and D
If C is a code over Z/4Z, then its modulo 2 reduction is called
the residue code and is denoted by

Res(C) ⊂ (Z/2Z)n = Fn
2 .

Let C = SpanF2
(A) be the binary code of length n spanned by

the row vectors of a k × n matrix A. The doubling of C is
defined by

D(C) = SpanF2

A A
1n 0
0 1n

 ,

where 1n = (1, 1, . . . , 1).
If C is doubly even and 8|n, then D(C) is a triply even code
of length 2n. In particular,

{doubly even code of length 24} D→ {triply even code of length 48}



Commutative Diagram

{Virasoro frames of V \}
difficult

str→


binary
triply even codes
of length 48


↑ DMZ ↑ D (doubling)

extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24


Harada–Lam–M. (2010):

str−1(D({doubly even})) (⊃)
= str−1(D ◦ Res({extremal type II}))
(⊃)
= DMZ({extremal type II})

all coincide.



{Virasoro frames of V \}
difficult

str→


binary
triply even codes
of length 48


↑ DMZ ↑ D (doubling)

extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24


Pless–Sloane (1975) enumerated maximal (all have dimension
12) members of

{binary doubly even codes of length 24}.



{Virasoro frames of V \}
difficult

str→


binary
triply even codes
of length 48


↑ DMZ ↑ D (doubling)

extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24


Betsumiya–M. (2010) enumerated maximal (dimension
{9, 13, 14, 15}) members of

{binary triply even codes of length 48}.



Theorem (Betsumiya–M., 2010)
Let D be a maximal binary triply even code of length 48.
Then

• ∃ doubly even codes C1, C2 of length 24,

• ∃ linear isomorphism f : C1/R1 → C2/R2, where

Ri = {x ∈ (Ci ∗ Ci)
⊥ | wt(x) ≡ 0 (mod 8)

wt(x ∗ y) ≡ 0 (mod 4)(∀y ∈ Ci)} ⊂ Ci (i = 1, 2),

satisfying

x1 ∈ C1, x2+R2 ∈ f(x1+R1) =⇒ wt(x1) ≡ wt(x2) (mod 8),

such that

D ∼= {(x1 x2) | x1 ∈ C1, x2 + R2 ∈ f(x1 + R1)}.

Remark Taking C1 = C2, f = identity gives D(C1).



Theorem (Betsumiya–M., 2010)

Every maximal member of{
binary triply even
code of length 48

}
is

• D(C) for some doubly even code C of length 24, or

• decomposable (only two such codes, one of the form
D(C1)⊕D(C2)⊕D(C3), another of the form
D(C1)⊕D(C2)), or

• a code of dimension 9 obtained from the triangular graph
T10 on 45 = |S10 : S2 × S8| vertices.



{Virasoro frames of V \}
difficult

str→


binary
triply even codes
of length 48


↑ DMZ ↑ D (doubling)

extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24


Betsumiya created database of

{binary triply even codes of length 48}.

http://www.st.hirosaki-u.ac.jp/~betsumi/triply-even/



{Virasoro frames of V \}
difficult

str→


binary
triply even codes
of length 48


↑ DMZ ↑ D (doubling)

extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24






extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24


For each binary doubly even C, classify C such that
Res C = C. The map Res is neither injective nor surjective.

• Calderbank–Sloane (with Young) (1997):
dim C = 12 =⇒ C ∈ image of Res.

• Rains (1999) determined the preimage for C = Golay.

• Dong–Griess–Höhn (1998) found a code C of dimension
6 in the image of Res, and Harada–Lam–M. (2010)
showed its preimage is unique.

• The image was determined by Harada–Lam–M. (2010),
but not preimages.



Theorem (Rains, 1999)
Given a doubly even code C of length n, dimension k, 3 1.

• the set of all type II Z4-codes C with Res(C) = C has a
structure as an affine space of dimension
(k − 2)(k + 1)/2 over F2 (due to Gaborit, 1996),

• the group {±1}n o Aut(C) acts as an affine
transformation group,

• two codes C, C ′ are equivalent if and only if they are in
the same orbit under this group.



Enumeration by Betty–M. (2010)

The number of doubly even codes C ⊂ F24
2 containing 1 and

C⊥ has minimum weight ≥ 4, and the number of extremal
type II codes C ⊂ (Z/4Z)24 with Res C = C.

dim 6 7 8 9 10 11 12
doubly even 1 7 32 60 49 21 9

extremal type II 1 5 31 178 764 1886 1903

1 13
extremal type II codes
of length 24
over Z/4Z

 Res→


binary
doubly even codes
of length 24




