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Two results of Jungnickel–Tonchev (1999, 2009)

PG(d, q)

(1999) Construction of a balanced generalized weighing matrix of

order qd+1−1
q−1

, weight qd

→ weighing matrix of order 2 qd+1−1
q−1

, weight qd if q ≡ 1

(mod 4)

PG(2e, q)

(2009) Distorting blocks of 2-( q2e+1−1
q−1

, qe+1−1
q−1

,
[
2e−1
e−1

]
) design

→ twisted Grassmann graph of E. van Dam and J. Koolen
(joint work with V. Tonchev).
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Weighing matrices

Definition

A weighing matrix W of order n and weight k is an n× n
matrix W with entries 1,−1, 0 such that WW T = kI.

A Hadamard matrix is a W(n, n).

We write “W is W(n, k)” for short.

W(n1, k)⊕W(n2, k) = W(n1 + n2, k).

Chan–Rodger–Seberry (1985) classified weighing matrices of
small n or k.
Harada–M. (to appear) extended classification, pointed out
errors.
Notably, a W(12, 5) was missing, which is a signed incidence
matrix of a semibiplane.
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Balanced generalized weighing matrices

G: a finite group (multiplicatively written), Ḡ = G ∪ {0}.

An n× n matrix B = (bij) with entries from Ḡ is a balanced
generalized weighing matrix (written BGW(n, k, µ)) over G, if

each row of B contains exactly k nonzero entries,

for any i 6= i′, the multiset

{gijg
−1
i′j | 1 ≤ j ≤ n, gij 6= 0, gi′j 6= 0}

represents every element of G exactly µ
|G| times.

If G = {±1}, then BGW(n, k, µ)
=⇒
⇐=6 W(n, k)

If G = {1}, then W is just an incidence matrix of a symmetric
2-(n, k, µ) design.
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PG(d, q)

Jungnickel–Tonchev (1999) (also Jungnickel (1982)).

∃BGW(
qd+1 − 1

q − 1
, qd, qd − qd−1) over GF(q)×.

↑ ↑ ↑
|PG(d, q)| Complements of intersection

hyperplanes

G → 1: incidence matrix of the symmetric design whose
blocks are complements of hyperplanes.
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Homomorphic image

B: BGW(n, k, µ) over G,

χ : G → H: surjective homo. Define χ(0) = 0.

Then χ(B): BGW(n, k, µ) over H. In particular,

G → {±1} surjective =⇒ BGW(n, k, µ) → W(n, k).

If q ≡ 1 (mod 4), then GF(q)× → {±1,±i} (surjective).

∃BGW(
qd+1 − 1

q − 1
, qd, qd − qd−1) over {±1,±i}
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Doubling

Lemma

B = X + iY : BGW(n, k, µ) over {±1,±i}, where X and Y
are (0,±1)-matrices. Then

W =

[
X Y
−Y X

]
is a W(2n, k).

Proof.

In Mn(C), BB∗ = kI =⇒ WW T = kI.

Thus

∃W(2
qd+1 − 1

q − 1
, qd) if q ≡ 1 (mod 4).

This gives the W(12, 5) missed by Chan–Rodger–Seberry.
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Distorting blocks of PGe(2e, q)

V = V (2e + 1, q), PG(2e, q) =
[
V
1

]
,

Geometric design PGe(2e, q) has blocks
[

V
e+1

]
.

2-(
q2e+1 − 1

q − 1
,
qe+1 − 1

q − 1
,

[
2e− 1

e− 1

]
) design.

Distorting (Jungnickel–Tonchev, 2009): fix H ∈
[

V
2e

]
and a

polarity σ on H (σ permutes
[
H
e

]
).

For W ∈
[

V
e+1

]
with W ∩H ∈

[
H
e

]
, replace W ∩H by

σ(W ∩H).
=⇒ 2-design with the same parameters but not isomorphic
as the geometric design
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The Grassmann graph Jq(2e + 1, e + 1)

Let V = V (n, q). The Grassmann graph Jq(n, d) has vertex
set =

[
V
d

]
. The adjacency is defined as follows:

W1 ∼ W2 ⇐⇒ dim W1 ∩W2 = d− 1.

Then Jq(n, d) is a distance-transitive graph, with intersection
array

bi = q2i+1 (qd−i − 1)(qn−d−i − 1)

(q − 1)2
, ci =

[
i

1

]2

.
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The intersection array

Γi(x) = {vertices at distance i from x} 3 y.
ci = |Γi−1(x) ∩ Γ1(y)|. bi = |Γi+1(x) ∩ Γ1(y)|.

x
y

ci bi

Γi−1(x) Γi(x) Γi+1(x)
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The Grassmann graph Jq(2e + 1, e + 1)

Let V = V (n, q). The Grassmann graph Jq(n, d) has vertex
set =

[
V
d

]
. The adjacency is defined as follows:

W1 ∼ W2 ⇐⇒ dim W1 ∩W2 = d− 1.

Then Jq(n, d) is a distance-transitive graph, with intersection
array

bi = q2i+1 (qd−i − 1)(qn−d−i − 1)

(q − 1)2
, ci =

[
i

1

]2

.

Characterization (Metsch, 1995): Jq(n, d) is characterized by
the intersection array, in many cases, but
(n, d) = (2e + 1, e + 1) was left open.
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Twisted Grassmann graph (Van Dam–Koolen,

2005)

V = V (2e + 1, q), H ∈
[

V
2e

]
. Define

A = {W ∈
[

V

e + 1

]
| W 6⊂ H},

B =

[
H

e− 1

]
.

The adjacency on A ∪ B is defined as follows:

W1 ∼ W2 ⇐⇒ dim W1∩W2−
1

2
(dim W1 +dim W2)+1 = 0.

This graph has the same intersection array as the Grassmann
graph Jq(2e + 1, e + 1) with vertex set

[
V

e+1

]
.
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Blocks of the distorted design (Jungnickel–

Tonchev, 2009)

Let σ be a polarity of H.
Points are PG(2e, q).
Blocks are

A′ = {(W \H) ∪ σ(W ∩H) | W ∈
[

V

e + 1

]
, W 6⊂ H},

B′ =

[
H

e + 1

]
.

This design has the same parameters, q-rank, and block
intersection numbers as the geometric design whose blocks are[

V
e+1

]
.
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The isomorphism

A = {W ∈
[

V

e + 1

]
| W 6⊂ H}, B =

[
H

e− 1

]
,

A′ = {(W \H) ∪ σ(W ∩H) | W ∈ A}, B′ =

[
H

e + 1

]
.

Lemma

Define f : A ∪ B → A′ ∪ B′ by

f(W ) =

{
(W \H) ∪ σ(W ∩H) if W ∈ A,

σ(W ) if W ∈ B.

Then for W1, W2 ∈ A ∪ B, the blocks f(W1) and f(W2) meet
at [

dim W1 ∩W2 − dim W1+dim W2

2
+ 1 + e

1

]
points.
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The twisted Grassmann graph is the block graph

Theorem (M.–Tonchev)

The twisted Grassmann graph, is isomorphic to the block
graph of the distorted design (PG(2e, q),A′ ∪ B′), where two
blocks are adjacent iff they have the largest possible
intersection:

[
e
1

]
.

Corollary

The automorphism group of the distorted design is the same
as that of the twisted Grassmann graph, which is the stabilizer
of H in PΓL(2e + 1, q).

Proof.

By Fujisaki–Koolen–Tagami (2006).
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