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Binary Codes

F2 = {0, 1}.
X = Fn

2 with d = Hamming distance.

d(x, y) = the number of i’s with xi 6= yi, where
x, y ∈ X.
d(x, y) = wt(x− y), the weight of the vector x− y, the
number of nonzero (in this case 1) entries in x− y.
supp(x), the support of a vector x, the set of nonzero
(in this case 1) coordinates in x.

C = linear code of length n, i.e., C ⊆ Fn
2 , closed under

binary addition.

min(C) := min{wt(x) | x ∈ C, x 6= 0}.
We say C is an [n, k] code if dim C = k.
We say C is an [n, k, d] code if moreover min(C) = d.

Akihiro Munemasa self-dual codes



Equivalence and Automorphisms

Definition

If σ is a permutation on {1, 2, . . . , n} and
x = (x1, . . . , xn) ∈ Fn

2 , then σ(x) := (xσ−1(1), . . . , xσ−1(n)).
Two binary codes C, C ′ of length n are said to be equivalent if
σ(C) = C ′ for some permutation σ of {1, 2, . . . , n}.

Definition

A permutation σ is an automorphism of a linear code C ⊆ Fn
2

if σ(C) = C. Aut(C) denotes the group of all automorphisms
of C.
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Self-Dual Codes

Scalar product: (x, y) =
∑n

i=1 xiyi.

C⊥ = {x ∈ Fn
2 | (x, y) = 0} : dual code

C is self-orthogonal if C ⊂ C⊥

C is self-dual if C = C⊥

C is doubly even if wt(c) ≡ 0 (mod 4) for all c ∈ C.

Proposition

C ⊂ Fn
2 is self-dual =⇒ dim C = n

2
.

doubly even =⇒ self-orthogonal.
doubly even self-dual code exists ⇐⇒ n ≡ 0 (mod 8).
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Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual (d.e.s.d.) code is a linear
code C with C = C⊥, satisfying wt(x) ≡ 0 (mod 4) for all
x ∈ C.

Proposition (Mallows–Sloane, 1973)

A doubly even self-dual code C of length n satisfies
min(C) ≤ 4[ n

24
] + 4.

Definition

A doubly even self-dual code is said to be extremal if
min(C) = 4[ n

24
] + 4.
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Table of Doubly Even Self-Dual Codes

length min(C) extremal non-extremal
n 4[ n

24
] + 4 codes codes

8 4 1
16 4 2
24 8 1 8
32 8 5 80
40 8 16470 77873
48 12 1 ?
56 12 ≥166 ?
64 12 ≥3270 ?
72 16 ? ?

Pless (1972), Pless–Sloane (1975), Conway–Pless (1980),
Conway–Pless–Sloane (1992),
Betsumiya–Harada–Munemasa (2011)
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Punctured and shortened codes

Let S ⊂ {1, . . . , n}. Let C be a binary linear code of length n.

Definition

The punctured code of C with respect to S is the code
obtained from C by restricting to the coordinates
{1, . . . , n} \ S.

(forget S)

Definition

The shortened code of C with respect to S is the subcode of
C consisting of codewords whose support is disjoint from S,
and then deleting the coordinates S.

(forget S only if 0)
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The balance principle

Suppose

{1, . . . , n} = S1 ∪ S2 (disjoint), |S1| = n1, |S2| = n2.

Theorem (The balance principle (Koch 1989))

Let C be a self-dual code of length n.

C1 = the shortend code of C with respect to S2,

C2 = the shortend code of C with respect to S1,

k1 = dim C1, k2 = dim C2.

Then
n1 − 2k1 = n2 − 2k2.

Akihiro Munemasa self-dual codes



The balance principle: n1 − 2k1 = n2 − 2k2

A generator matrix of a self-dual code of length n = n1 + n2

has the following form:

n1 n2

k1{

n1 − 2k1{

C1 0
0 C2

C⊥
1 /C1 C⊥

2 /C2

}k2

}n2 − 2k2

n1 − 2k1 = dim C⊥
1 /C1 = n2 − 2k2 = dim C⊥

2 /C2.

C1 = the shortend code of C with respect to S2,

C2 = the shortend code of C with respect to S1.
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Self-dual [10, 5, 4] code does not exist

n1 − 2k1 = n2 − 2k2

n1 = 4 n2 = 6
k1 = 1{

n1 − 2k1 = 2{

1 1 1 1 0
0 1 1 1 1 1 1
0 ?
∗ ∗

← k2 = 2
}n2 − 2k2 = 2
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The balance principle: n1 − 2k1 = n2 − 2k2

Aim: Given C1, C2, construct self-dual codes of length n1 +n2.

n1 n2

k1{

n1 − 2k1{

C1 0
0 C2

C⊥
1 /C1 C⊥

2 /C2

}k2

}n2 − 2k2

Filling the last set of rows is equivalent to choosing a linear
bijection

f : C⊥
1 /C1 → C⊥

2 /C2

Then the resulting code is

Cf = {(x|y) | x ∈ C⊥
1 , y ∈ f(x + C1)}

dim Cf = k1 + k2 + n1 − 2k1 =
1

2
(n1 + n2).
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The balance principle: n1 − 2k1 = n2 − 2k2

Proposition

C1 : self-orthogonal [n1, k1] code

C2 : self-orthogonal [n2, k2] code

For f : C⊥
1 /C1 → C⊥

2 /C2: linear bijection, define

Cf = {(x|y) | x ∈ C⊥
1 , y ∈ f(x + C1)}.

Then Cf is an [n1 + n2,
1
2
(n1 + n2)] code.

When is Cf self-dual (equivalently, self-orthogonal)? This
occurs precisely when

∀x, ∀x′ ∈ C⊥
1 , ∀y ∈ f(x+C1), ∀y′ ∈ f(x′+C1), (x, x′) = (y, y′).
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Ci: self-orthogonal [ni, ki] code for i = 1, 2

Cf = {(x|y) | x ∈ C⊥1 , y ∈ f (x + C1)}

Induced scalar product

( , ) :C⊥
1 /C1 × C⊥

1 /C1 → F2

( , ) :C⊥
2 /C2 × C⊥

2 /C2 → F2

For a linear bijection f : C⊥
1 /C1 → C⊥

2 /C2,

Cf is self-dual (⇐⇒ self-orthogonal)

⇐⇒ f is an isometry, i.e.,

(x + C1, x
′ + C1) = (f(x + C1), f(x′ + C1)) (∀x, x′ ∈ C⊥

1 ).
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Special case: n2 = 2, C2 = 0

C1 0
0 C2

C⊥
1 /C1 C⊥

2 /C2

becomes

n1 2
k1{

n1 − 2k1{
C1 0

C⊥
1 /C1 0⊥ }2 = 1 + 1

Then k1 = 1
2
n1 − 1.

=⇒ C1 is a subcode of of codimension 1 in a self-dual
[n1,

1
2
n1] code C̃1.
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Special case: n2 = 2, C2 = 0

C1 0
x 1 1
y 0 1

C1 ⊂ 〈C1, x〉 = C̃1 : self-dual [n1,
1
2
n1] code

Every self-dual [n1 + 2, 1
2
n1 + 1, d] code with d > 2 can be

obtained from

a self-dual [n1,
1
2
n1] code C̃1,

an [n1,
1
2
n1 − 1] subcode C1 of C̃1,

y ∈ C⊥
1 with wt(y) odd

Actually y and C1 determine each other.

Akihiro Munemasa self-dual codes



Special case: n2 = 2, C2 = 0

In practice one starts from a self-dual [n1,
1
2
n1] code C̃1

C̃1 0
1 1

y 0 1

Then y determines C1 as C̃1 ∩ y⊥.
Alternatively, C1 can be specified as a kernel of a nonzero
linear mapping C̃1 → F2 (building-up method).
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General case: n1 − 2k1 = n2 − 2k2

Ci: self-orthogonal [ni, ki] code for i = 1, 2

C1 0
0 C2

C⊥
1 /C1 C⊥

2 /C2

Assume 1 ∈ C1, 1 ∈ C2 (so n1 and n2 are even). The induced
scalar products on C⊥

1 /C1, C⊥
2 /C2 are symplectic. A linear

bijection
f : C⊥

1 /C1 → C⊥
2 /C2

corresponds to an element of Sp(2m, 2) (2m = n1 − 2k1)

| Sp(2m, 2)| = 2m2
m∏

i=1

(22i − 1).
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General case: n1 − 2k1 = n2 − 2k2

Ci: self-orthogonal [ni, ki] code for i = 1, 2

f : C⊥1 /C1 → C⊥2 /C2

Cf = {(x|y) | x ∈ C⊥1 , y ∈ f (x + C1)}

σi ∈ Aut Ci =⇒ σi induces C⊥
i /Ci → C⊥

i /Ci

σ2 ◦ f ◦ σ1 : C⊥
1 /C1 → C⊥

2 /C2

Then Cf
∼= Cσ2◦f◦σ1 . This means that

{isometries f} → {self-dual codes obtained from C1, C2}

induces

Aut C2\ Sp(2m, 2)/ Aut C1

→ {self-dual codes obtained from C1, C2}/ ∼= .
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General case

Theorem

Let Ci be a self-orthogonal [ni, ki] code 3 1 for i = 1, 2, and
assume n− 2k1 = n2 − 2k2 = 2m. Then there is a mapping
from Aut C2\ Sp(2m, 2)/ Aut C1 to the set of equivalence
classes of self-dual codes with generator matrix of the form

C1 0
0 C2

C⊥
1 /C1 C⊥

2 /C2 ← f
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Doubly even version

O+(2m, 2) = orthogonal group.

Theorem

Let Ci be a doubly even [ni, ki] code 3 1 for i = 1, 2, and
assume n− 2k1 = n2 − 2k2 = 2m, n1 ≡ n2 ≡ 0 (mod 8).
Then there is a mapping from Aut C2\O+(2m, 2)/ Aut C1 to
the set of equivalence classes of doubly even self-dual codes
with generator matrix of the form

C1 0
0 C2

C⊥
1 /C1 C⊥

2 /C2 ← f

We now apply this theorem with n1 = 16, n2 = 24.
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Doubly even self-dual [40, 20, 8] codes

C1: doubly even [16, k1] code 3 1
C2: doubly even [24, k2] code 3 1
16− 2k1 = 24− 2k2 = 2m.
There is a mapping from Aut C2\O+(2m, 2)/ Aut C1 to the
set of equivalence classes of doubly even self-dual codes with
generator matrix of the form

C1 0
0 C2

C⊥
1 /C1 C⊥

2 /C2

Possible C1, C2 can easily be enumerated for all k1, k2.
However . . .
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Doubly even self-dual [40, 20, 8] codes

C1: doubly even [16, k1] code 3 1
C2: doubly even [24, k2] code 3 1
Magma could not compute Aut C2\O+(2m, 2)/ Aut C1

when m ≥ 6.
Thus we need:

16− 2k1 = 24− 2k2 = 2m ≤ 10,

or equivalently, k1 ≥ 3.
We obtain a classification of doubly even self-dual [40, 20, 8]
codes containing a [16,≥ 3] code (3 1) as a shortened code.
There are 16468 codes up to equivalence.
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Doubly even self-dual [40, 20, 8] codes

King (2001) computed (without classifying) the total
number of doubly even self-dual [40, 20, 8] codes:

10263335567003567415076803513287627980544163840000000

We found 16468 codes up to equivalence, whose total
number is

10263328648423680225300693565121891639210557440000000

Slightly short of complete!
There is at least one doubly even self-dual [40, 20, 8] code
which does not contain [16,≥ 3] code (3 1) as a shortened
code.
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16468+2 doubly even self-dual [40, 20, 8] codes

Theorem
1 There are exactly two (up to equivalence) doubly even

self-dual [40, 20, 8] codes which do not contain [16,≥ 3]
code (3 1) as a shortened code.

2 There are 16470 (up to equivalence) doubly even self-dual
[40, 20, 8] codes.

Remark

The two exceptional codes appeared already in the work
of Yorgov (1983) and Yorgov–Zyapkov (1996).

We have no direct proof of Part 1 of the above theorem.

Similar consideration played an important role in the proof
(by computer) of the uniqueness of doubly even self-dual
[48, 24, 12] code by Houghten–Lam–Thiel–Parker (2003).
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