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McKay’s construction of the Leech lattice (1972)

A Hadamard matrix of order n is a square matrix with
entries ±1 satisfying HHT = nI.

When n = 12, there exists a unique (up to equivalence)
Hadamard matrix H, and one may take H with
H + HT = −2I.

The Leech lattice L is defined as

L =
1

2
SpanZ

[
I H − I
0 4I

]
⊂ 1

2
Z24 ⊂ R24

L is an integral lattice.

L ⊃ 1

2
SpanZ

[
4I 4(H − I)
0 4I

]
= SpanZ 2I = 2Z24.
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L = 1
2 SpanZ

[
I H−I
0 4I

]
= Leech lattice

min L = min{‖x‖2 | 0 6= x ∈ L} = 4.

{x ∈ L | ‖x‖2 = 4} is a spherical 11-design with 196560
points, giving a unique optimal kissing configuration
(Bannai–Sloane, 1981).

A frame of L is {±f1,±f2, . . . ,±f24} with (fi, fj) = 4δij.
We also call the sublattice F =

⊕24
i=1 fi a frame.

Example

L ⊃ 1

2
SpanZ

[
4I 4(H − I)
0 4I

]
= SpanZ

[
2I 0
0 2I

]
= 2Z24.

There are many others. Equivalence by the isometry group of
L. If F is a frame, then

F ⊂ L ⊂ 1

4
F.
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F ⊂ L ⊂ 1
4F , F ∼= 2Z24

L/F ⊂ 1
4
F/F ∼= Z24

4 .
A code over Z4 of length n is a submodule of Zn

4 .

F → C = L/F ⊂ Z24
4 .

Conversely, given a code C over Z4 of length 24, there is a
frame F ⊂ L s.t. C = L/F if and only if

(1) C is self-dual,

(2) ∀x ∈ C, the Euclidean weight wt(x) is divisible by 8,

(3) min{wt(x) | x ∈ C, x 6= 0} = 16.
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Definitions

(x, y) =
∑n

i=1 xiyi, where x, y ∈ Zn
4 ,

a code of length n over Z4 is a submodule C ⊂ Zn
4 ,

C is self-dual if C = C⊥, where
C⊥ = {x ∈ Zn

4 | (x, y) = 0 (∀y ∈ C)},
For u ∈ Zn

4 , the Euclidean weight of u is

wt(u) =
n∑

i=1

u2
i ,

where we regard ui ∈ {0, 1, 2,−1} ⊂ Z.
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F ⊂ L ⊂ 1
4F , F ∼= 2Z24

L/F ⊂ 1
4
F/F ∼= Z24

4 .
Given a code C over Z4 of length 24, there is a frame F ⊂ L
s.t. C = L/F if and only if

(1) C is self-dual,

(2) ∀x ∈ C, the Euclidean weight wt(x) is divisible by 8,

(3) min{wt(x) | x ∈ C, x 6= 0} = 16.

A code C is called type II if (1) and (2) hold.

If (1), (2) and (3) hold, then C is called an extremal type II
code over Z4 of length 24.
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F → C = L/F ⊂ 1
4F/F ∼= Z24

4 : Equivalence

Aut L = the group of isometries of L.
Consider another F ′ → C ′ = L/F ′ ⊂ 1

4
F ′/F ′ ∼= Z24

4 . Then

F ∼= F ′ under Aut L

⇐⇒ C and C ′ are monomially equivalent.

frames in L ↔ extremal type II code over Z4 of length 24.
(↔ gives a correspondence of equivalence classes.)

Dong–Mason–Zhu (1994): every frame of the Leech lattice
gives rise to the Virasoro frame of the moonshine vertex
operator algebra.
Example of an extremal type II code over Z4 of length 24:
Bonnecaze–Solé–Calderbank (1995): Hensel lifted Golay code.
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Residue code = C mod 2 = Res(C)

If C is a code over Z4, then its modulo 2 reduction is called
the residue code and is denoted by

Res(C) ⊂ Fn
2 .

Example: For the Hensel lifted Golay code C, Res(C) is the
Golay code.

C : type II code over Z4

=⇒ Res(C) is a doubly even binary code containing 1

C : extremal type II code of length 24 over Z4

=⇒ Res(C)⊥ has minimum weight at least 4.
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Residue code = C mod 2 = Res(C)

Determine {frames of L}/ ∼, with the help of the residue
map F 7→ Res(L/F ):

{F : frame of L}/ ∼ →


doubly even C ⊂ F24

2

length = 24, 1 ∈ C
min C⊥ ≥ 4
easily enumerated

 / ∼

This map is neither injective nor surjective.

Calderbank–Sloane (with Young) (1997):
{doubly even self-dual codes} ⊂ image.

The image was determined by Harada–Lam–M., but not
preimages.

Rains (1999) determined the preimage for C = Golay.

Akihiro Munemasa Leech lattice



{F : frame of L}/ ∼ Res→


doubly even C ⊂ F24

2

length = 24, 1 ∈ C
min C⊥ ≥ 4
(easily enumerated)

 / ∼

is equivalent toC :

extremal
type II code
of length 24

over Z4

 / ∼ Res→


doubly even C ⊂ F24

2

length = 24, 1 ∈ C
min C⊥ ≥ 4

 / ∼

but the map is more naturally considered as:C :
type II code
of length 24

over Z4

 / ∼ Res→
{

doubly even C ⊂ F24
2

length = 24, 1 ∈ C

}
/ ∼
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C :
type II code
of length 24

over Z4

 / ∼ Res→
{

doubly even C ⊂ F24
2

length = 24, 1 ∈ C

}
/ ∼

This is surjective (Gaborit, 1996).
Suppose C is a doubly even code of length 24 with 1 ∈ C.

[A] generates C,

[
A
B

]
generates C⊥.

Then there exists a matrix Ã with Ã mod 2 = A such that

C = Z4-span of

[
Ã
2B

]
is a type II code over Z4 (i.e., Res(C) = C).

Res−1(C) ⊂ {Z4-span of

[
Ã + 2M

2B

]
| M : (0, 1) matrix}
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[A] generates C, [ A
B ] generates C⊥.C :

type II code
of length 24

over Z4

 / ∼ Res→
{

doubly even C ⊂ F24
2

length = 24, 1 ∈ C

}
/ ∼

Res−1(C) ⊂ {Z4-span of

[
Ã + 2M

2B

]
| M : (0, 1) matrix}

In fact,

Res−1(C) = {Z4-span of

[
Ã + 2M

2B

]
| M ∈ U0},

where

U0 = {M | MAT + AMT = 0, Diag(AMT ) + Diag(1MT ) = 0}.

U0 is a linear subspace of matrices.
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[A] generates C, [ A
B ] generates C⊥.

Set
U0 = {M | MAT + AMT = 0, Diag(AMT ) + Diag(1MT ) = 0}.
W0 = 〈{M ∈ U0 | MAT = 0}, {AEii | 1 ≤ i ≤ n}〉,

Theorem

Aut(C) acts on U0/W0 as an affine transformation group.
Moreover, there is a bijection

Aut(C)-orbits on U0/W0 →


eq. class
of type II

codes C with
Res(C) = C


M mod W0 7→

eq. class of
codes generated by

[
Ã + 2M

2B

]
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Practical Implementation

Theorem

Aut(C) acts on U0/W0 as an affine transformation group.
Moreover, there is a bijection

Aut(C)-orbits on U0/W0 →


eq. class
of type II

codes C with
Res(C) = C


Aut(C) → AGL(U0/W0).

Since AGL(m, F2) ⊂ GL(1 + m, F2), we actually construct a
linear representation:

Aut(C) → GL(1 + m, F2),

where m = dim U0/W0.
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C = Golay code

Aut C = M24: Mathieu group.

M24 → AGL(44, 2) → GL(45, 2)

acts on a hyperplane H of F45
2 , and

orbits of M24 on H ↔ type II codes C with Res(C) = C.

The 244 elements of H are divided into orbits under M24. As
an estimate, there are at least

244

|M24|
= 71856.7 . . .

orbits.
We extract only those orbits which correspond to extremal
codes → only 13 orbits (an independent verification of
computation due to Rains (1999)).
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F → C = L/F → Res(C)

Rains (1999): there are exactly 13 extremal type II codes C
s.t. Res(C) is the binary extended Golay code.

Harada–Lam–M. there is a unique extremal type II code C s.t.
dim Res(C) = 6 (This is related to the code used by Miyamoto
(2004) to construct V \). # of Res(C) is also computed.

dim Res(C) 6 7 8 9 10 11 12
# of Res(C) 1 7 32 60 49 21 9

# C 1 5 31 178 764 1886 1890+13

So there are 1+5+31+178+764+1886+1890+13 = 4768
frames of the Leech lattice.
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