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An enumeration problem related to the root

system E8

E8 has 240 roots.
fix α ∈ E8, then |{β ∈ E8 | (α, β) = 1}| = 56.

{β ∈ E8 | (α, β) = 1}
= {β1, α− β1, β2, α− β2, . . . , β28, α− β28}.

Problem

Classify subsets Y of size 28 of the form
|Y ∩ {βi, α− βi}| = 1 for all i, up to the action of W (E8)α.⌈

228

|W (E8)α|

⌉
= 93.

It turns out there are 467 orbits (about 10 seconds by
Magma).
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Fix α ∈ E8

{β ∈ E8 | (α, β) = 1}
= {β1, α− β1, β2, α− β2, . . . , β28, α− β28}.

Problem A

Classify subsets Y of size 28 of the form
|Y ∩ {βi, α− βi}| = 1 for all i, up to the action of W (E8).

is a subproblem of

Problem B

Classify maximal subsets Y of E8 satisfying (β, γ) ≥ 0 for
∀β, γ ∈ Y .

The interest comes from graphs with smallest eigenvalue at
least −2.
Kitazume–Munemasa (unpublished): via Problem A
Cvetković–Rowlinson–Simić (2004): not via Problem A
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Eigenvalues of Graphs

A graph Γ (finite undirected simple) consists of a finite set of
vertices V and edges E, where an edge is a 2-element subset
of vertices.
The incidence matrix D of Γ:

rows: vertices
columns: edges
entries: 1 or 0 according to v ∈ e or not.

The adjacency matrix of Γ:

A(Γ) = DDT−Diag((kv)v∈V ) A(Γ)u,v =

{
1 if {u, v} ∈ E,

0 otherwise,

where kv = |{e ∈ E | v ∈ e}|: the degree of v.
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Leonhard Euler and William T. Tutte

Eulerian graphs (Seven bridges of Königsberg, 1735) (from
Wikipedia)

Bill Tutte (1917–2002): modern graph theory
http://www.math.uwaterloo.ca/

Dragomir Djokovic (retired in 2006)
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Alan J. Hoffman (1924–)

A(Γ) : adjacency
matrix of Γ
λmin(A(Γ)) ≥ −2
⇐⇒ A(Γ) + 2I ≥ 0
Gram matrix of a
set of vectors
of norm 2

http://www.research.ibm.com/people/a/ajh/
founder of “Linear Algebra and Applications”
graphs with smallest eigenvalue at least −2: combinatorial
characterization: generalized line graphs, finitely many
exceptional graphs
Cameron–Goethals–Seidel–Shult (1976): Root system of type
A, D (generalized line graphs) or E (exceptional graphs)
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Representation of graphs

Let Γ = (V, E) be a graph, m ∈ R, m > 1.
A representation of norm m of Γ is a mapping φ : V → Rn

such that

(φ(u), φ(v)) =


m if u = v,

1 if {u, v} ∈ E,

0 otherwise.

Gram matrix A(Γ) + mI.

∃ representation of norm m ⇐⇒ λmin(A(Γ)) ≥ −m.

For m = 2: root system of type A,D or E.
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From −2 to −3

What can we say about a finite subset X of Rn satisfying

∀α, β ∈ X, (α, β) =

{
±3 if α = ±β,

±1 or 0 otherwise.

Graphs with smallest eigenvalue at least −3?

Integral lattices generated by a set of vectors of norm 3?
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−2 > −1−
√

2 ≈ −2.4142 > −3

Hoffman (1977): The problem does not immediately get wild
if we go beyond −2.

Theorem

−2 > ∀θ > −1−
√

2, ∃d > 0,
there is no graph ∆ with minimum degree > d and
−2 > λmin(∆) ≥ θ.

Not true for θ = −1−
√

2.
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