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Distance-Regular Graphs

Brouwer–Cohen–Neumaier (1988).
Examples: Dual polar spaces = {max. totally isotropic subsp.}
and their subconstituent: eg. alternating forms graph.

Main Problem: Classify distance-regular graphs.

classification of feasible parameters

characterization by parameters

characterization by local structure

A local characterization of the graphs of alternating forms and
the graphs of quadratic forms graphs over GF(2)
A. Munemasa, D.V. Pasechnik, S.V. Shpectorov
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Definition of a distance-regular graph
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Γi(x): the set of vertices at distance i from x

the numbers ai, bi, ci are independent of x and y ∈ Γi(x).

ai, bi, ci are called the parameters of a distance-regular
graph Γ.
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1-Homogeneity

Nomura (1987) obtained inequalities among ai, bi, ci

requiring constant number of edges between cells is an
additional condition (1-homogeneity).
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Generalized Quadrangle of order (s, t)
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Local Characterization of Alternating Forms Graph

Alt(n, 2) over GF(2)

Local Graph = Γ(x) = neighborhood of x. Assume that a
distance-regular graph Γ has the same local graph as Alt(n, 2),
i.e., Grassmann graph (= line graph of PG(n− 1, 2)), and the
same parameters (in particular c2 = µ = 20). Then
Γ ∼= Alt(n, 2) or Quad(n− 1, 2) (M.–Shpectorov–Pasechnik).

Key idea: “µ local = local µ”, where “µ = Γ(x) ∩ Γ(y)” with
y ∈ Γ2(x). Taking z ∈ Γ(x) ∩ Γ(y),

µ of local of Γ = µ of Γ(z)

= (Γ(x) ∩ Γ(y)) ∩ Γ(z)

= Γ(z) ∩ (Γ(x) ∩ Γ(y))

= local of Γ(x) ∩ Γ(y)

= local of µ of Γ.
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Local Characterization of Alternating Forms Graph

Alt(n, 2) over GF(2)

If local graphs of Γ are Grassmann (line graph of
PG(n− 1, 2)), then “µ local = local µ” implies

µ of Grassmann = local of µ

hence
3× 3 grid = local of µ

µ-graphs of Γ are locally 3× 3-grid, and µ = c2 = 20 =
(
6
3

)
=⇒ J(6, 3).

Akihiro Munemasa Graphs



Jurǐsić–Koolen, 2003

From now on, a µ-graph of a graph is the subgraph induced
on the set of common neighbors of two vertices at distance 2.

Cocktail party graph = complete graph K2p minus a matching

= complete multipartite graph Kp×2

(p parts of size 2)

Classified 1-homogeneous distance-regular graphs with cocktail
party µ-graph Kp×2 with p ≥ 2.
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Examples

local ↓

Kp×2 µ-graph
...

K6×2 Gosset K5×2

K5×2 Schläfli K4×2

K4×2
1
2
5-cube 1

2
n-cube K3×2

K3×2 J(5, 2) J(n, 2) J(n, k) K2×2

K2×2 2× 3 2× (n− 2) k × (n− k) K1×2

The bottom rows are all grids.
Jurǐsić–Koolen (2007): 1-homogeneous distance-regular
graphs with cocktail party µ-graph Kp×2 with p ≥ 2 are
contained in those shown above and some of their quotients.
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Jurǐsić–Koolen, 2007

Complete multipartite graph Kp×n is a generalization of
cocktail party graph Kp×2.
Examples

... µ-graph
K6×n K5×n

K5×n 3.O7(3) K4×n

K4×n O+
6 (3) Meixner K3×n

K3×n O5(3) U5(2) Patterson 3.O−
6 (3) K2×n

K2×n GQ(2, 2) GQ(3, 3) GQ(9, 3) GQ(4, 2) K1×n = Kn

n = t + 1

They assumed distance-regularity, but having Kp×n as
µ-graphs turns out to be a very strong restriction already.
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“local µ = µ local”

In local characterization,

local of µ-graph = µ of local
↑ ↑ ↑ ↑

known derive known assume

In µ characterization,

local of µ-graph = µ of local
↑ ↑ ↑ ↑

known assume known derive

Example

local of µ = Kp×n = µ of local
↑ ↑ ↑ ↑

K(p−1)×n assume K(p−1)×n derive
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Taking local, µ = Kp×n → µ = K(p−1)×n

Assume every µ-graph of Γ is Kp×n. Taking local graph
(p− 1) times, one obtains a graph ∆ whose µ-graphs are
K1×n = Kn: equivalently, 6 ∃K1,1,2,

∀ edge⊂ ∃!maximal clique

Such graphs always come from a geometric graph such as GQ?

... µ-graph
K6×n K5×n

K5×n 3.O7(3) K4×n

K4×n O+
6 (3) Meixner K3×n

K3×n O5(3) U5(2) Patterson 3.O−
6 (3) K2×n

K2×n GQ(2, 2) GQ(3, 3) GQ(9, 3) GQ(4, 2) K1×n = Kn

n = t + 1

Akihiro Munemasa Graphs



The parameter α

For a graph Γ, we say the parameter α exists if ∃x, y, z,

d(x, y) = 1, d(x, z) = d(y, z) = 2

and |Γ(x) ∩ Γ(y) ∩ Γ(z)| = α(Γ) for all such x, y, z.
Example: α(GQ(s, t)) = 1 if s, t ≥ 2.
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α-graph is a clique, hence α ≤ p

Suppose every µ-graph of
Γ is Kp×n,and α exists.

Claim: Γ(x) ∩ Γ(y) ∩ Γ(z) is a clique. Indeed, if nonadjacent
u, v ∈ Γ(x)∩ Γ(y)∩ Γ(z), then x, y, z ∈ Γ(u)∩ Γ(v) ∼= Kp×n,
but

d(x, y) = 1, d(x, z) = d(y, z) = 2 : contradiction.

α(Γ) is bounded by the clique size in Γ(x) ∩ Γ(z) ∼= Kp×n

which is p.
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The parameter α

We have shown α(Γ) ≤ p.

One can also shows α(Γ) ≥ p− 1.

If ∆ is a local graph, then α(∆) exists and
α(∆) = α(Γ)− 1.
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Regularity

Lemma

Let Γ be a connected graph, M a non-complete graph.
Assume every µ-graph of Γ is M . Then Γ is regular.

Proof.

By two-way counting (BCN, p.4, Proposition 1.1.2.)

Lemma

Let Γ be graph, M a graph without isolated vertex. Assume
every µ-graph of Γ is M . Then every local graph of M has
diameter 2.
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Reduction

Lemma

Let Γ be a connected graph. Assume every µ-graph of Γ is
Kp×n, and α exists. Let ∆ be a local graph of Γ. Then

Γ is regular,

∆ has diameter 2,

every µ-graph of ∆ is K(p−1)×n.

α(∆) exists and α(∆) = α(Γ)− 1.

We know α(Γ) = p or p− 1.
Suggests that the reverse procedure of taking a local graph
does not seem possible so many times, meaning p cannot be
too large.
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Main Result

Theorem

Let Γ be a connected graph. Assume every µ-graph of Γ is
Kp×n, where p, n ≥ 2, and α exists in Γ. Then

(i) p = α(Γ) unless (p, α(Γ)) = (2, 1) and diameter ≥ 3.

(ii) If n ≥ 3, then

p = α(Γ) = 2 =⇒ Γ locally GQ(s, n− 1),

p = α(Γ) = 3 =⇒ Γ locally2 GQ(n− 1, n− 1),

p = α(Γ) = 4 =⇒ Γ locally3 GQ(2, 2),

p ≥ 5: impossible.

proof of (i).

Rule out (p, α(Γ)) = (2, 1) when diameter= 2 (strongly
regular).
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Open Problem

Rule out (p, α(Γ)) = (2, 1) when diameter≥ 3.

This might occur even when n = 2: µ-graph of Γ is cocktail
party graph K2×2 = C4. Nonexistence was conjectured by
Jurǐsić–Koolen (2003).
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