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t-(v , k, λ) designs

Definition
A t-(v , k , λ) design is a pair (P ,B), where

P : a finite set of “points”,

B: a collection of k-subsets of P , a member of which is called a
“block,”

∀T ⊂ P with |T | = t, there are exactly λ members B ∈ B such
that T ⊂ B .

Examples:

2-(v , 3, 1) design = Steiner triple system

2-(q2, q, 1) design = affine plane of order q

t-design =⇒ (t − 1)-design

More precisely,. . .
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Intersection numbers

(P ,B): t-(v , k , λ) design. Write λ = λt ,

λt−1 = |{B ∈ B | T ′ ⊂ B}|,

where T ′ ⊂ P, |T ′| = t − 1. Then

λt−1(k − t + 1) =
∑
B∈B
T ′⊂B

|B \ T ′|

= |{(B , x) ∈ B | T ′ ∪ {x} ⊂ B , x ∈ P \ T ′}|

=
∑

x∈P\T ′

|{B ∈ B | T ′ ∪ {x} ⊂ B}|

=
∑

x∈P\T ′

λt

= λt(v − t + 1).
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(P ,B): t-(v , k, λ) design

Then (P ,B): (t − 1)-(v , k , λt−1) design, where

λt−1 = λt
v − t + 1

k − t + 1
.

For example,

5-(24, 8, 1) =⇒ 4-(24, 8, 5)

=⇒ 3-(24, 8, 21)

=⇒ 2-(24, 8, 77)

=⇒ 1-(24, 8, 253)

=⇒ 0-(24, 8, 759)

⇐⇒ |B| = 759.
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(P ,B): t-(v , k, λ) design

Let I ⊂ P, J ⊂ P, |I | = i , |J | = j , I ∩ J = ∅, i + j ≤ t.
Define

λj
i = |{B ∈ B | I ⊂ B , B ∩ J = ∅}|.

In particular,
λ0

i = λi (0 ≤ i ≤ t).

λj−1
i = λj−1

i+1 + λj
i .

λj−1
i

λj−1
i+1 λj

i
+

λ0
0

λ0
1 λ1

0

λ0
2 λ1

1 λ2
0

λ0
3 λ1

2 λ2
1 λ3

0

λ0
4 λ1

3 λ2
2 λ3

1 λ4
0

λ0
5 λ1

4 λ2
3 λ3

2 λ4
1 λ5

0
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5-(24, 8, 1) design, λj−1
i = λj−1

i+1 + λj
i

759

253 506

77 176 330

21 56 120 210

5 16 40 80 130

1 4 12 28 52 78

Next row?

λj−1
i

λj−1
i+1 λj

i
+

λ0
6, λ1

5, λ2
4, . . .

λ0
6(I ) = |{B ∈ B | I ⊂ B}| = 1 or 0

depending on the choice of I ⊂ P with |I | = 6.
Choose I in such a way that λ0

6(I ) = 1.
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5-(24, 8, 1) design, I ⊂ P , |I | = 6, I ⊂ ∃B ∈ B

λj
6−j = |{B ∈ B | I \ J ⊂ B , B ∩ J = ∅}| where J ⊂ I , J = j .

λj
5−j = λj

6−j + λj+1
5−j

giving

759

253 506

77 176 330

21 56 120 210

5 16 40 80 130

1 4 12 28 52 78

1 0 4 8 20 32 46

Similarly, taking I ⊂ P, |I | = 7 appropriately, we obtain λj
7−j .

Finally taking I ∈ B, we obtain λj
8−j .

Akihiro Munemasa (Tohoku University) Codes and Designs 8 / 24



5-(24, 8, 1) design

759

253 506

77 176 330

21 56 120 210

5 16 40 80 130

1 4 12 28 52 78

1 0 4 8 20 32 46

1 0 0 4 4 16 16 30

1 0 0 0 4 0 16 0 30

The last row implies

B , B ′ ∈ P , B 6= B ′ =⇒ |B ∩ B ′| ∈ {4, 2, 0}.
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The 5-(24, 8, 1) design, |B ∩ B ′| ∈ {4, 2, 0}

P = {1, 2, . . . , 24}. We may take B as:

1 2 3 4 5 6 7 8
1 2 3 4 9 10 11 12
1 2 3 5 9 13 14 15
1 2 4 5 9 16 17 18
1 3 4 5 9 19 20 21
2 3 4 5 9 22 23 24

1 2 3 6 9 16 19 22
1 2 4 6 9 13 20 23
1 3 4 6 9 14 17 24
1 2 5 6 9 10 21 24
1 3 5 6 9 11 18 23

Do we have to find 759 blocks one by one?
No, 12 blocks are sufficient (so one more needed).
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Todd’s lemma

Let (P ,B) be a 5-(24, 8, 1) design. Then

B , B ′ ∈ B, |B ∩ B ′| = 4 =⇒ B4B ′ ∈ B.

Proof by contradiction:

1 2 3 4 5 6 7 8
1 2 3 4 9 10 11 12

5 6 7 8 9 10 13 14
5 6 7 8 11 12 15 16

* * * * 5 6 7 9 11

Here “****” must be odd and even simultaneously.
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Consequence of Todd’s lemma

1 2 3 4 5 6 7 8
1 2 3 4 9 10 11 12
1 2 3 5 9 13 14 15
1 2 4 5 9 16 17 18
1 3 4 5 9 19 20 21
2 3 4 5 9 22 23 24

1 2 3 6 9 16 19 22
1 2 4 6 9 13 20 23
1 3 4 6 9 14 17 24
1 2 5 6 9 10 21 24
1 3 5 6 9 11 18 23

By Todd’s lemma

((B14B4)4B7)4(B54B6) = {7, 8, 17, 18, 20, 21, 23, 24} ∈ B.
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Binary codes

A (linear) binary code of length v is a subspace of the vector space
Fv

2 . If C is a binary code and dim C = k , we say C is an binary [v , k]
code.
The dual code of a binary code C is defined as

C⊥ = {x ∈ Fv
2 | x · y = 0 (∀y ∈ C )}.

where

x · y =
v∑

i=1

xiyi .

Then
dim C⊥ = v − dim C .

The code C is said to be self-orthogonal if C ⊂ C⊥ and self-dual if
C = C⊥.
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Generator matrix of a code

If a binary code C is generated by row vectors x (1), . . . , x (b), then the
matrix x (1)

...
x (b)


is called a generator matrix of C . This means

C = {
b∑

i=1

εix
(i) | ε1, . . . , εb ∈ F2} ⊂ Fv

2 .
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Incidence matrix of a design

If D = (P ,B) is a t-(v , k , λ) design, the incidence matrix M(D) of D
is |B| × |P| matrix whose rows and columns are indexed by B and P ,
respectively, such that its (B , p) entry is 1 if p ∈ B , 0 otherwise. In
other words, the row vectors of M(D) are the characteristic vectors
of blocks:

M(D) =

x (B1)

...
x (Bb)

 : b × v matrix,

where B = {B1, . . . , Bb}, and x (B) ∈ Fv
2 denotes the characteristic

vector of B .
The binary code of the design D is the binary code of length v
having M(D) as a generator matrix.
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dim C ≤ 12 for 5-(24, 8, 1) design

Recall that in a 5-(24, 8, 1) design (P ,B),

|B ∩ B ′| ∈ {8, 4, 2, 0} (∀B , B ′ ∈ B).

The binary code C of a 5-(24, 8, 1) design is self-orthogonal. Indeed,
the incidence matrix has row vectors x (B) (B ∈ B), the characteristic
vector of the block B . Then

x (B) · x (B′) = |B ∩ B ′| mod 2 = (8 or 4 or 2 or 0) mod 2 = 0.

Thus C ⊂ C⊥, hence

dim C ≤ 1

2
(dim C + dim C⊥) ≤ 24

2
= 12.
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One more block for 5-(24, 8, 1) design

1 2 3 4 5 6 7 8
1 2 3 4 9 10 11 12
1 2 3 5 9 13 14 15
1 2 4 5 9 16 17 18
1 3 4 5 9 19 20 21
2 3 4 5 9 22 23 24

1 2 3 6 9 16 19 22
1 2 4 6 9 13 20 23
1 3 4 6 9 14 17 24
1 2 5 6 9 10 21 24
1 3 5 6 9 11 18 23

The above 11 blocks generate a 11-dimensional code C0. Note the
transposition (7 8) leaves C0 invariant. We know from Todd’s lemma
B0 = {7, 8, 17, 18, 20, 21, 23, 24} ∈ B (but x (B0) ∈ C0).
Consider the block containing {1, 2, 3, 8, 9}. There are two choices:
B = {1, 2, 3, 8, 9, 17, 21, 23} and B ′ = {1, 2, 3, 8, 9, 18, 20, 24}.
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One more block for 5-(24, 8, 1) design

We know

B0 = {7, 8, 17, 18, 20, 21, 23, 24} ∈ B, x (B0) ∈ C0 = C
(7 8)
0 .

We have either

B = {1, 2, 3, 8, 9, 17, 21, 23} ∈ B or

B ′ = {1, 2, 3, 8, 9, 18, 20, 24} ∈ B.

But B ′(7 8) = B4B0, so

〈C0, x
(B′)〉(7 8) = 〈C0, x

(B) + x (B0)〉 = 〈C0, x
(B)〉.

Therefore, the code generated by the design is unique up to
isomorphism. This self-dual (C = C⊥) code is known as the extended
binary Golay code. Next we show that the code determines the
design uniquely.
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Weight

For x ∈ Fv
2 , we write

supp(x) = {i | 1 ≤ i ≤ v , xi 6= 0},
wt(x) = | supp(x)|.

For a binary code C , its minimum weight is

min{wt(x) | 0 6= x ∈ C}.

If an [v , k] code C has minimum weight d , we call C an [v , k , d ]
code.
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Mendelsohn equations for t-(v , k, λ) design (P ,B)

For S ⊂ P, let

ni(S) = |{B ∈ B | i = |B ∩ S |}|.

Then ∑
i≥0

(
i

j

)
ni(S) = λj

(
|S |
j

)
(0 ≤ j ≤ t).

Proof: Count
{(J , B) | J ⊂ S ∩ B , |J | = j}

in two ways.
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ni(S) = |{B ∈ B | i = |B ∩ S |}|

Let C be the binary code of the design (P ,B).
Write ni(supp(v)) = ni(v) for v ∈ Fv

2 .∑
i≥0

(
i

j

)
ni(v) = λj

(
wt(v)

j

)
(0 ≤ j ≤ t).

If v ∈ C⊥, then |B ∩ supp(v)| is even, so

ni(v) = |{B ∈ B | i = |B ∩ supp(v)|}| = 0 for i odd.

Thus ∑
0≤i≤wt(v)

i : even

(
i

j

)
ni(v) = λj

(
wt(v)

j

)
(0 ≤ j ≤ t).
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(P ,B): 5-(24, 8, 1) design

∑
0≤i≤wt(v)

i : even

(
i

j

)
ni(v) = λj

(
wt(v)

j

)
(0 ≤ j ≤ 5).

Taking v ∈ C⊥ with 0 < wt(v) < 8 gives no solution. This means
that C⊥ has minimum weight 8.
Take v ∈ C = C⊥ with wt(v) = 8. Then there are six equations for
five unknowns n0, n2, n4, n6, n8. The unique solution is

(n0, n2, n4, n6, n8) = (30, 448, 280, 0, 1).

This implies supp(v) ∈ B. Thus

B = {supp(x) | x ∈ C , wt(x) = 8}.

Now the uniqueness of the design follows from that of C .
Akihiro Munemasa (Tohoku University) Codes and Designs 22 / 24



C : the binary code of a 5-(24, 8, 1) design

For v ∈ C⊥, ∑
0≤i≤wt(v)

i : even

(
i

j

)
ni(v) = λj

(
wt(v)

j

)
(0 ≤ j ≤ 5).

Taking wt(v) = 10 gives a unique solution which is not integral. This
means that C⊥ has no vectors of weight 10.

weight 0 8 12 16 24
# vectors 1 759 2576 759 1

C is generated by vectors of weight 8 =⇒ C⊥ contains the
all-one vector =⇒ the weight distribution of C⊥ is symmetric.

C⊥ contains only vectors of weight divisible by 4 (such a code is
called doubly even) =⇒ C⊥ ⊂ (C⊥)⊥ = C , forcing C = C⊥.
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Summary

D: 5-(24, 8, 1) design (Witt system).

The binary code C of D is a doubly even self-dual [24, 12, 8]
code.
The binary code C of D is unique up to isomorphism.
{supp(x) | x ∈ C , wt(x) = 8} = B.
There is a unique 5-(24, 8, 1) design up to isomorphism.

The Assmus–Mattson theorem implies that every binary doubly even
self-dual [24, 12, 8] code coincides with the binary code of a
5-(24, 8, 1) design, and hence such a code (the extended binary Golay
code) is also unique.
The next two lectures will cover

proof of the Assmus–Mattson Theorem
characterization of the (binary) Hadamard matrix contained in
the set of vectors of weight 12 in the extended binary Golay
[24, 12, 8] code.
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