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Q Part |

t-designs

intersection numbers
5-(24,8,1) design

[24,12, 8] binary self-dual code

@ Part

o Assmus—Mattson theorem
e extremal binary doubly even codes

Q Part

o Hadamard matrices
e ternary self-dual codes
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Summary of Part |

D: 5-(24,8,1) design (Witt system).

@ The binary code C of D is a doubly even self-dual [24,12, 8]

code.

o {supp(x) | x € C, wt(x) =8} = B.

@ There is a unique 5-(24,8,1) design up to isomorphism.
The Assmus—Mattson theorem implies that every doubly even
self-dual [24, 12, 8] code gives rise to a 5-(24,8,1) design, and hence
such a code (the extended binary Golay code) is also unique.
Part Il will cover

@ proof of the Assmus—Mattson theorem

@ other 5-designs obtained from doubly even self-dual codes
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The Assmus—Mattson theorem (1969)

Let C be a binary code of length v, minimum weight k.

P={12,...,v}
B = {supp(x) | x € C, wt(x) = k},
S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|
Then (P, B) is a t-(v, k, \) design for some A.
In fact
k(k—1)---(k—t+1)

A= viv—1)- - (v—t+1)

|B].
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The real vector space of dimension 2

From a t-(v, k, \) design (P, B),

@ p &P — e, aunit vector in .

e B € B — x(B) € F: characteristic vector

e B — M(D): incidence matrix — C C F}: binary code
From a binary code C of length v and B C {1,2,..., v},
V =R¥ = R,

e x € Fy — X: a unit vector in V

o B—xB) cFy — x(B): a unit vector in V

e B— {x(B) | B € B} — characteristic vector in V

o C — C: the characteristic vector of C in V
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Important 2 X 2¥ matrices

The linear transformation of V = R2" which is a key to the argument
below is the Hadamard matrix of Sylvester type:

H = ((=1))xyery-

It satisfies
H=H" H?>=HH" =2"I.

We use H to investigate the metric space F§ with the Hamming
distance

d(x,y) =wt(x+y) (x,y €F3).

The i-th distance matrix A; is defined as

Ai = (Bd(ay)i)xyery (0 <7< v).
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A;: the i-th distance matrix

Ay =1,
AA = (i + 1A+ (v—i+ 1A (1<i<v).

In particular, A; is a polynomial of degree / in A;.
Define the diagonal matrix E by

ES = (5x,y5wt(X),i)x,y€F5
= diag(A;0).
E; is “the projection onto weight-/ vectors.”
E'l=A0, wherel=(1,1,....1)T € V.
EFE = o1 E], Z Ef=1.

i=0
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is “the projection onto weight-/ vectors.”

i

Theorem (Assmus—Mattson)
Let C be a binary code of length v,
C=EC+ Z E;C (minimum weight = k),
i>k
P={1,2,...,v},
S ={wt(x) | x € C*, 0 < wt(x) < v},
B = {supp(x) | x € C, wt(x) = k},
t=k—|S|

Then (P, B) is a t-(v, k, A) design for some A.

(S can also be described by E and C+, but we first express the
conclusion in terms of matrices.)
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Design property expressed by matrices

o TCP, |T|=t x{T) €Fy: the characteristic vector of T,
o C={x e C|wt(x) =k},
o B = {supp(x) | x € Cx}.

HBeB|TcCB}=|{xeC| T Csupp(x)}
=H{xe C| d(x(T),x) =k — t}| — dkoe

= Z(Akft)x(-r),x - 5/(,2['

xeC
= (A=t C)pr) — Ok
= (Ef A=t C)r) — Ok 2
So we want to show

E;A,_+C is a constant multiple of E;1.
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ErA.C = \Ei1

Theorem (Assmus—Mattson)

C=EC+ Z ErC  (minimum weight = k),

i>k
S={wt(x) | x € C*H, 0 <wt(x) < v},
t=k—|S|
Then

E;Ar_+C is a constant multiple of E;1.

o’

(S can also be described by E;* and 61 but then we need to express
S in terms of C)
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C and C* are connected by H

(HO) = (-1) = {'C' TXECT_(1cied),,

0 otherwise

yeC
SO
— ]_ A
Define 1
Ej = S, HE H = HErH (0<i<v).

Then E,EJ = 5IJEi1 Z:'/:O E,' =1
EfCL#£0 & E'HC 40 < HE'HC #£0
«— EC+#0.
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S={wt(x) | x € C*, 0 <wt(x) < v}

S={i|0<i<v, EXCL#£0)}
={il0<i<v, EC#0}.

Since > Ei =1,

C=(EB+E)C+) EC.
ieS

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EC+> EC

i€S i>k

and t = k — |S| = EA,_.C e RE/1.
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EFEC+> EC

i€eS i>k

and t = k — |S| = EA,_.C e RE/1.

reduces to

Theorem (Assmus—Mattson)
(Bo+E)C+> EC=EC+> ECandt=k—|S|
i€eS i>k

= E/Ai+(Bo+E)C+ Ef A Y EC €REL

ieS
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H diagonalizes A;

For y € F¥ with wt(y) =1,

(AtH)xy = D> (A)w(-1)7Y = > (-1)**

zeFy zeFy
d(x,z)=1

=D D)LY = Hey Y (-1

= Hey(v = wt(y)) = (v = 20) (HE} )y

v

= () (v = 2))HE ).

j=1

Thus H diagonalizes A;:

AtH=HY (v —2))E.

Jj=1
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E;'s are projections onto eigenspaces of A;

1 1
AlEi - Al(gHE,*H) = g(AlH)E,*H
1 - N\ k) Ok 1 . *
= ?(H;(V - 2./)EJ )E, H= E(V — 2I)HEI- H
= (v — 2i)E;.

Thus A; has eigenvalue v — 2/ on E;V, and

V = EVBE,-V
i=0

is the eigenspace decomposition of A;.
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E = 2%HEI-*H, in particular,

2(E)y = (HE;H)y = > H

z€Fy
Wt(z):v

= Heihyy, = (-1)(-17 1=(1

_ (_1)Wt(x)(_1)Wt(y) — (_1)wt(y) ( (_1)"E,.*1> .

< 7 N
—_

~—

M

=

<

~—

E,V = RXV:(—1)"E,*1 1=(1,...,1)" e V).

Similarly
EV=R) E1=RL
i=0
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E,V=RYY (-1YE'1l, EV =Rl

AE = (V — 2i)E,‘, so A E;V C E;V

Being a polynomial in A;, the matrices A,_; and AJ1 also leave E;V
invariant. Thus

E'A(Eo+ E)C € EIAEV + EXALE,V
C E'E,\V + EE,V
=RE/1+RE ) (-1)E1
i=0
— RE/1.

E:A_(Eo + E,)C € RE/1.
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E:A(Ey+ E,)C, EfA(E + E,)C € RE1

Theorem (Assmus—Mattson)
(Bo+E)C+Y EC=EC+> ECandt=k—|S|
i€s i>k

= E/At(Bo+E)C+ Ef A Y EC €REL

ieS

reduces to

Theorem (Assmus—Mattson)
ELADY EC=EA(EC+) EC) (mod RESL) (V))
i€eS i>k

and t =k — |S| = EfA_. Y ECecRE1
i€S
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(U, AL A2 AR, ) = (1, AL, Ay, As, . ..

Also,

E;AE;C = EAD
= EE1
€ RE1.

Thus

E;AE;C € REI,
E;AE;C € RE/L.
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E*AE;C € RE1

Theorem (Assmus—Mattson)

ELADY EC=EA(EC+> EC) (mod RESL) (V)

i€s i>k

and t =k — |S| = E{A_. Y ECecREL

ieS

reduces to

Theorem (Assmus—Mattson)
EEAY EC=EAD> EC (mod RES1) (V)
i€S i>k

and t =k — |S| = EfA.Y ECcRE1

i€eS
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V =@, EiV: eigenspace decomposition of A;

A; has |S| eigenvalues on
w=EpEV.
ics

Being a polynomial in A;, the matrix A,_; has at most |S]|

eigenvalues on W, so dag, ..., a;sj-1 € Q such that
S|-1
At = Z ajAj on W.
j=0
So
1S|—1
Ay EC= Z Ay EC.
ieS ieS
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Ak—t ZieS E,-& Z|S| jAj Zies Ei(A:

Theorem (Assmus—Mattson)

EEADY EC=EADY EC (mod RES1) (V)
i€S i>k
and t =k — |S| = EfA. Y ECcRE1
ieS |
Proof:
X || 5|1
EfA Y EC=E Z aA > EC= Z GE A EC
ieS i€S i€S
|51 |51
= Z aE;MY EC= Z > a(EAENC
i>k =0 >k
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End of proof.

Need to show:

IS|-1
Z Z ai(E; A Ef)C = 0.
j=0 i>k
Since
o t=k—15|
e 0<j<|S],
o k<.

we have t + j < k < i, and hence E;A,EF = 0 by the triangle
inequality for the Hamming distance. Indeed,

(A))x., = #(paths of length j from x to y)
=0 if wt(x) = t and wt(y) = i.

O
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The Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S = {wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .

e C: [24,12,8] binary doubly even self-dual (C = C*) code, so
k =8 and C has only weights 0, 8,12, 16, 24.
S ={wt(x) | x € C*, 0 < wt(x) < 24} = {8,12,16},
t—k—|S|=8-3=5
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Uniqueness of the extended binary Golay code

C: [24,12,8] binary doubly even self-dual (C = C1) code.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24},

B = {supp(x) | x € C, wt(x) = 8},

for some .

@ If A > 1, then there are two distinct blocks in B sharing at least
5 (hence 6) points. Their symmetric difference would make a
vector of weight 4 in C, contradicting the fact that C has
minimum weight 8. Thus A = 1.

@ So C is the binary code of a 5-(24,8,1) design which was
already shown to be unqiue.

This proves the uniqueness of the extended binary Golay code.
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S = {wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:

larger k = smaller C = larger C* = larger S
suppose C = C*, doubly even = S not too large
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S ={wt(x) | x € C, 0 <wt(x) < v},
5=k—|S|.

o k=8 1S|=3 S={81216}, v = 24.
o k=12,|S| =7, S = {12,16,20,24,28,32,36}, v = 48
o k=16,|S| = 11, S = {16,20, 24, 28, 32, 36, 40, 44, 48, 52, 56},
v=T2.
In general, Vk: a multiple of 4, |S| = k — 5,

S={k,k+4,k+8,... 5k—24=v—k}

v = 6k — 24 = 24m, where k = 4m + 4.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m] code has
minimum weight at most 4m + 4.

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

For m > 1, an extremal binary doubly even self-dual code gives a
5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.
@ m = 1: the extended binary Golay code and the 5-(24,8,1)
design
e m = 2: Houghten-Lam—-Thiel-Parker (2003): unique [48, 24, 12]
code and a 5-(48, 12, 8) design which is unique under
self-orthogonality.
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Extremal binary doubly even self-dual codes

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

@ For m > 3, neither a code nor a design is known.

Theorem (Zhang, 1999)

There does not exist an extremal [24m, 12m, 4m + 4] binary doubly
even self-dual code for m > 154.
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