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Q@ Part |

t-designs

intersection numbers
5-(24,8,1) design

[24,12, 8] binary self-dual code

Q Partll

o Assmus—Mattson theorem
e extremal binary doubly even codes

© Part Il

o Hadamard matrices
e ternary self-dual codes

Akihiro Munemasa (Tohoku University) Codes and Designs 2 /29



Summary of Part |

D: 5-(24,8,1) design (Witt system).
@ The binary code C of D is a doubly even self-dual [24,12, 8]
code.

o {supp(x) | x € C, wt(x) =8} = B.
@ There is a unique 5-(24,8,1) design up to isomorphism.
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Summary of Part |

D: 5-(24,8,1) design (Witt system).
@ The binary code C of D is a doubly even self-dual [24,12, 8]
code.
o {supp(x) | x € C, wt(x) =8} = B.
@ There is a unique 5-(24,8,1) design up to isomorphism.

The Assmus—Mattson theorem implies that every doubly even
self-dual [24, 12, 8] code gives rise to a 5-(24,8,1) design, and hence
such a code (the extended binary Golay code) is also unique.
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Summary of Part |

D: 5-(24,8,1) design (Witt system).

@ The binary code C of D is a doubly even self-dual [24,12, 8]

code.

o {supp(x) | x € C, wt(x) =8} = B.

@ There is a unique 5-(24,8,1) design up to isomorphism.
The Assmus—Mattson theorem implies that every doubly even
self-dual [24, 12, 8] code gives rise to a 5-(24,8,1) design, and hence
such a code (the extended binary Golay code) is also unique.
Part Il will cover

@ proof of the Assmus—Mattson theorem

@ other 5-designs obtained from doubly even self-dual codes
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The Assmus—Mattson theorem (1969)

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},
S={wt(x) | x € C*+, 0 <wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, A) design for some A.
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The Assmus—Mattson theorem (1969)

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},
S={wt(x) | x € C*+, 0 <wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, A) design for some A.

In fact
k(k—1)---(k—t+1)

A= viv—1)--(v—t+1)

|B].

Akihiro Munemasa (Tohoku University) Codes and Designs 4 /29



The real vector space of dimension 2

From a t-(v, k, \) design (P, B),
@ p &P — e, aunit vector in .
e B € B — x(B) € F: characteristic vector
e B — M(D): incidence matrix — C C F}: binary code
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The real vector space of dimension 2

From a t-(v, k, \) design (P, B),
@ p &P — e, aunit vector in .
e B € B — x(B) € F: characteristic vector
e B — M(D): incidence matrix — C C F}: binary code

From a binary code C of length v and B C {1,2,...,v},
V =R? =RF.
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The real vector space of dimension 2

From a t-(v, k, \) design (P, B),

@ p &P — e, aunit vector in .

e B € B — x(B) € F: characteristic vector

e B — M(D): incidence matrix — C C F}: binary code
From a binary code C of length v and B C {1,2,...,v},
V =R¥ = R¥.

e x € Fy — X: a unit vector in V

o B—xB) cFy — x(B): a unit vector in V

e B — {x(B) | B € B} — characteristic vector in V

o C — C: the characteristic vector of C in V
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Important 2 X 2¥ matrices

The linear transformation of V = R?" which is a key to the argument
below is the Hadamard matrix of Sylvester type:

H = ((=1)")xyery-
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Important 2 X 2¥ matrices

The linear transformation of V = R?" which is a key to the argument
below is the Hadamard matrix of Sylvester type:

H = ((=1)")xyery-

It satisfies

H=H" H?*=HH" =2"I.

Y
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Important 2 X 2¥ matrices

The linear transformation of V = R?" which is a key to the argument
below is the Hadamard matrix of Sylvester type:

H = ((=1)")xyery-

It satisfies
H=H" H?=HH" =2"I.

We use H to investigate the metric space F} with the Hamming
distance

d(x,y) =wt(x —y) =wt(x +y) (x,y € F).
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Important 2 X 2¥ matrices

The linear transformation of V = R?" which is a key to the argument
below is the Hadamard matrix of Sylvester type:

H = ((=1)")xyery-

It satisfies
H=H" H?=HH" =2"I.

We use H to investigate the metric space F} with the Hamming
distance

d(x,y) =wt(x —y) =wt(x +y) (x,y € F3).

The j-th distance matrix A; is defined as

Ai = (6d(x,y),i)x,y€]F‘2/ (0 <i< V)-

Akihiro Munemasa (Tohoku University) Codes and Designs 6 /29



A;: the i-th distance matrix

Ay =1,
AA =i+ DA+ (v—i+ DA (1<i<v).

In particular, A; is a polynomial of degree i in A;.
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A;: the i-th distance matrix

Ay =1,
AA =i+ DA+ (v—i+ DA (1<i<v).

In particular, A; is a polynomial of degree i in A;.
Define the diagonal matrix E/ by

Ei* = (5x,y5Wt(X),i)X7)’EF5
= diag(A;(A))-
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A;: the i-th distance matrix

Ay =1,
AA =i+ DA+ (v—i+ DA (1<i<v).

In particular, A; is a polynomial of degree i in A;.
Define the diagonal matrix E/ by

Ei* = (5x,y5Wt(X),i)X7)’EF5
= diag(A;(A))-

E* is “the projection onto weight-i vectors.”

El=A0, wherel=(1,1,....,1)T € V.
ETE =6iE, Y E =1
i=0
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is “the projection onto weight-/ vectors.”

i

Theorem (Assmus—Mattson)
Let C be a binary code of length v,
C=EC+ Z ErC  (minimum weight = k),
i>k
P=1{1,2,...,v},
S ={wt(x) | x € C*, 0 < wt(x) < v},
B = {supp(x) | x € C, wt(x) = k},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some A.
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is “the projection onto weight-/ vectors.”

i

Theorem (Assmus—Mattson)
Let C be a binary code of length v,

C= Eg& + Z E,-*& (minimum weight = k),
i>k
P={1,2,...,v},
S ={wt(x) | x € C*, 0 < wt(x) < v},
B = {supp(x) | x € C, wt(x) = k},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some A.

(S can also be described by E and C+, but we first express the
conclusion in terms of matrices.)
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is “the projection onto weight-/ vectors.”

i

Theorem (Assmus—Mattson)
Let C be a binary code of length v,
C=EC+ Z E;C (minimum weight = k),
i>k
P=1{1,2,...,v},
S ={wt(x) | x € C*, 0 < wt(x) < v},
B = {supp(x) | x € C, wt(x) = k},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some A.

(S can also be described by E and C+, but we first express the
conclusion in terms of matrices.)
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Design property expressed by matrices

o TCP,|T|=t x(T) cFy: the characteristic vector of T,
o Gy = {x e C|wt(x) =k}, k= minimum weight of C,
o B = {supp(x) | x € Cy}.
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Design property expressed by matrices

o TCP,|T|=t x(T) cFy: the characteristic vector of T,
o Gy = {x e C|wt(x) =k}, k= minimum weight of C,
o B = {supp(x) | x € Cy}.
HBeB|TCB}=|{xe C| T Csupp(x)}
= |{x € C | d(x),x) = k — t}|
:‘{XG C|d( () X):k—t}|—5k72t

- Z Ak t X(T (5k2t

xeC
= (Ak—tC)r) — Ok 2t
— (E:Ak—té)X(T) - 5k,2t-
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Design property expressed by matrices

o TCP,|T|=t x(T) cFy: the characteristic vector of T,
o Gy ={x e C|wt(x) =k}, k = minimum weight of C,
o B = {supp(x) | x € Cy}.
HBeB|TCB}=|{xe C| T Csupp(x)}
= |{x € C | d(xT),x) = k — t}|
= {x € C|d(xT),x) =k — t}| — dio:

- Z Ak t X(T (5k2t

xeC
= (Ak—tC)r) — Ok 2t
— (E:Ak—té)X(T) - 5k,2t-
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Design property expressed by matrices

o TCP,|T|=t x(T) € Fy: the characteristic vector of T,
o Gy = {x e C|wt(x) =k}, k= minimum weight of C,
o B = {supp(x) | x € Cy}.
HBeB|TcCB} =|{xe C| T Csupp(x)}
= |{x € C | d(x),x) = k — t}|
:‘{XG C|d( () X):k—t}|—5k72t

- Z Ak t X(T (5k2t

xeC
= (Ak—tC)r) — Ok 2t
— (E:Ak—té)X(T) - 5k,2t-
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Design property expressed by matrices

o TCP,|T|=t x(T) cFy: the characteristic vector of T,
o Gy = {x e C|wt(x) =k}, k= minimum weight of C,
o B = {supp(x) | x € Cy}.
HBeB|TCB}={xe C|T Csupp(x)}
= |{x € C | d(x),x) = k — t}|
:‘{XG C|d( () X):k—t}|—5k72t

- Z Ak t X(T (5k2t

xeC
= (A C)xm — Gt
— (E:Ak—té)X(T) - 5k,2t-
So we want to show
E;Ai_+C is a constant multiple of E/1.
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ErA.C = \Ei1

Theorem (Assmus—Mattson)
C=EC+ Z ErC  (minimum weight = k),
i>k
S={wt(x) | x€ C*H, 0 <wt(x) < v},
t=k—|S|
Then

E;Ar_+C is a constant multiple of E;1.
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ErA.C = \Ei1

Theorem (Assmus—Mattson)

C=EC+ Z ErC  (minimum weight = k),

i>k
S={wt(x) | x€ C*-, 0 <wt(x) < v},
t=k—|S|
Then

E;Ar_+C is a constant multiple of E;1.

v

(S can also be described by E;* and 61 but then we need to express
S in terms of C)
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C and C* are connected by H

(HO) = S (-1 = {‘C‘ Txecm_ .

vee 0 otherwise

SO
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C and C* are connected by H

(HE) = S (~1p = {‘C‘ Txecm_ .

0 otherwise

yeC
SO
Cl— L he.
€l
Define
E = 2—1VHE,-*H =H'EfH (0<i<v).
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C and C* are connected by H

(HE) = S (~1p = {‘C‘ Txecm_ .

0 otherwise

yeC
SO
cl— L he.
€l
Define
E = 2—1VHE,-*H =H'E'H (0<i<v).

Then EiE; = 6;jE;, Y 1o Ei = 1.
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C and C* are connected by H

(HE) = S (~1p = {‘C‘ Txecm_ .

0 otherwise

yeC
SO
Cl— L he.
€l
Define
E = 2—1VHE,-*H =H'EfH (0<i<v).

Then EiE; = 6;jE;, Y 1o Ei = 1.

EfCL#0 < E'HC#0 < H'E'HC #0
— EC#0.
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C and C* are connected by H

(HE) = S (~1p = {‘C‘ Txecm_ .

0 otherwise

yeC
SO
Cl— L he.
€l
Define
E = 2—1VHE,-*H =H'EfH (0<i<v).

Then EiE; = 6;jE;, Y 1o Ei = 1.

EFCL40 e E'HC#0 <= HE'HC £0
— EC#0.
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C and C* are connected by H

(HE) = S (~1p = {‘C‘ Txecm_ .

0 otherwise

yeC
SO
Cl— L he.
€l
Define
E = 2—1VHE,-*H =H'E'H (0<i<v).

Then EiE; = 6;jE;, Y 1o Ei = 1.

EfCL#0 < E'HC#0 < H'E'HC #0
— EC#0.
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S={wt(x) | x € C*, 0 <wt(x) < v}

S={i|0<i<v, EECL#£0}
={i|0<i<v, EC#0}.

Since > Ei =1,

C=(EB+E)C+) EC.
ieS

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EC+> EC

i€S i>k

and t = k — |S| = EA,_.C e RE/1.
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EFEC+> EC

i€eS i>k

and t = k — |S| = E;A._.C € RE/1.
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EC+> EC,

i€eS i>k

and t = k — |S| = EA._.C € RE/1.
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EC+> EC

i€s i>k

and t = k — |S| = EA,_.C e RE/1.

reduces to

Theorem (Assmus—Mattson)
(Bo+E)C+> EC=EC+) EC
i€eS i>k

and t = k — |S| = E'Ac((Eo+ E,)C Z ) € RE;1.
€S
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EFEC+> EC

ies i>k

and t = k — |S| = EA,_.C e RE/1.
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EFEC+> EC

ies i>k

and t = k — |S| = EA,_.C e RE/1.

reduces to

Theorem (Assmus—Mattson)
(Bo+E)C+> EC=EC+) EC
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and t = k — |S| = E/A((Eo+E,)C Z ) € RE;1.
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EFEC+> EC

i€eS i>k

and t = k — |S| = EA,_.C e RE/1.

reduces to

Theorem (Assmus—Mattson)
(Bo+E)C+> EC=EC+> ECandt=k—|S|
i€eS i>k

and t =k —|S| = E/A(Bo+E)C+EA_ Y ECecREL

ieS

.
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Restating further

Theorem (Assmus—Mattson)

C=(B+E)C+) EC=EFEC+> EC

i€eS i>k

and t = k — |S| = EA,_.C e RE/1.

reduces to

Theorem (Assmus—Mattson)
(Bo+E)C+> EC=EC+> ECandt=k—|S|
i€eS i>k

and t = k—|S| = E/A(Eo+E)C+EA_ Y ECcREL

ieS

.
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H diagonalizes A;

For y € F¥ with wt(y) =

(AtH)xy = D> (A)uz(—1)7 = > (-1)*

zeFy zeFy
d(x,z)=1

=1 = Ay D (-

= Hey(v = 2wi(y)) = (v — 20)(HE )y

v v

(Z(V—2j JHE]). HZ v —2j)E)x
j=1
Thus H diagonalizes A;:

AtH=HY (v—2))E.
j=1
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H diagonalizes A;

For y € F¥ with wt(y) =

(AH)y = S (A = 3 (C1)

zeFy zeFy
d(x,z)=1

=1 = Ay D (-

= Hey(v = 2wi(y)) = (v — 20)(HE )y

v v

(Z(V—2j JHE]). HZ v —2j)E)x
j=1
Thus H diagonalizes A;:

AtH=HY (v—2))E.
j=1
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H diagonalizes A;

For y € F¥ with wt(y) =

(AH)y = S (A = 3 (C1)

zeFy zeFy
d(x,z)=1

=3I = Hy D (-

= Hey(v = 2wi(y)) = (v — 20)(HE )y

v v

(Z(V—2j JHE]). HZ v —2j)E)x
j=1
Thus H diagonalizes A;:

AtH=HY (v—2))E.
j=1
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H diagonalizes A;

For y € F¥ with wt(y) =

(AH)y = S (A = 3 (C1)

zeFy zeFy
d(x,z)=1

= (U1 = Hy S

= Hey(v = 2wi(y)) = (v — 20)(HE )y

v v

(Z(V—2j JHE]). HZ v —2j)E)x
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H diagonalizes A;

For y € F¥ with wt(y) =

(AH)y = S (A = 3 (C1)

zeFy zeFy
d(x,z)=1

=1 = Ay D (-

= H, (v —2wt(y)) = (v — 2/)(HE)x,

v v

= (> (v —2))HE}), HZ v —2))E )«
j=1
Thus H diagonalizes A;:

AtH=HY (v—2))E.
j=1
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H diagonalizes A;

For y € F¥ with wt(y) =

(AH)y = S (A = 3 (C1)
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d(x,z)=1

=1 = Ay D (-
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v v
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H diagonalizes A;

For y € F¥ with wt(y) =

(AH) .y = Y (A)ea(-1) = 3 (1)

zeFy zeFy
d(x,z)=1

=1 = Ay D (-

= Hey(v = 2wi(y)) = (v — 20)(HE )y

v v

(Z(V—2j JHE]). HZ v —2j)E)x
j=1
Thus H diagonalizes A;:

AtH=HY (v—2))E.
j=1
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For y € F¥ with wt(y) =

(AH)y = S (A = 3 (C1)
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d(x,z)=1

=1 = Ay D (-
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H diagonalizes A;

For y € F¥ with wt(y) =

(AH)y = S (A = 3 (C1)

zeFy zeFy
d(x,z)=1

=1 = Ay D (-

= Hey(v = 2wi(y)) = (v — 20)(HE )y

v v

= (> (v —2))HE}), HZ v —2))E)x
j=1
Thus H diagonalizes A;:

AtH=HY (v —2))E;.
j=1
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E;'s are projections onto eigenspaces of A;

1 1
AlEi - Al(gHE,*H) = E(AlH)EI*H
1 - N\ Cx) C* 1 : *
= o5, (H ;(v ~ 2)E))E;H = (v — 2)HE; H
= (v — 2/)E..

Thus A; has eigenvalue v — 2/ on E;V, and

V = EVBE,-V
i=0

is the eigenspace decomposition of A;.
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E;'s are projections onto eigenspaces of A;

1 1
S HEH) = S (AH)ETH

AE = Ay =

1 Y 1
= 5 (H > (v—2)E)EH = oo (v = 2)HEH
j=1
= (v — 2i)E;.

Thus A; has eigenvalue v — 2/ on E;V, and

V = EVBE,-V
i=0

is the eigenspace decomposition of A;.
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E = %HE*H, in particular,

2'(E)wy = (HE;H)xy = > H

zelFy
wt(z):v

= HoaH, = (=1 -1t 1=(1,...,1) €Fy)

= (= 19— 1) — (1) (i( - 1)"5—*1) .

E,V = RXV:(—1)"E,*1 1=(1,...,1)" e V).

Similarly
EV=R) E1=RL
i=0
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2'(E)wy = (HE;H)xy = > H

zelFy
Wt(z):v

= HoaHiy, = (1) -1t 1=(1,...,1) €Fy)

= (= 1= 1) — (1) (i( - 1)"5—*1) .

i=0
EV=RY (-1)E1 (1=(1,...,1)" € V).

Similarly
EV=R) E1=RL
i=0

Akihiro Munemasa (Tohoku University) Codes and Designs 16 / 29



E,V=RYY (-1YE'1l, EV =Rl

AE = (V — 2i)E,‘, so A E;V C E;V

A also leave E;V invariant. Thus

E;A(Ey+E)C € EfAEV + EIAE,V
C E/EV + E/E,V
=RE/1+RE*, ) (-1)E1

i=0
= RE;1.
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E,V=RYY (-1YE'1l, EV =Rl

AlE' = (V — QI)E,, SO
A{ also leave E;V invariant. Thus

E:A (B + E)C € EXALEV + EXAE,V
C E'EV +E'EV
=RE/1+RE", Y (-1)E1

i=0
= RE;1.
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E,V=RYY (-1YE'1l, EV =Rl

AE = (V — 2i)E,‘, so A E;V C E;V

A also leave E;V invariant. Thus

E;A(Ey+E)C € EfAEV + EIAE,V
C E/EV + E/E,V
=RE/1+RE*, ) (-1)E1
i=0

= RE;1.

Being a polynomial in A;, the matrices A,_; also has the same
property

EfA_(Eo+ E,)C € RE/L.
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E:A(Ey+ E,)C, EfA(E + E,)C € REF1

Theorem (Assmus—Mattson)
(Bo+E)C+Y EC=EC+> ECandt=k—|S|
i€S i>k

= E/Ai+(Bo+E)C+ Ef A Y EC €REL

ieS
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; E;Ak_t(Eo = EV)C
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ieS
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(U, AL A2 AR, ) = (1, AL, Ay, As, . ..

Also,

E;AE;C =EAD
= EE’1
= 0,,E1
€ RE/1.

Akihiro Munemasa (Tohoku University) Codes and Designs 19 /29



(U, AL A2 AR, ) = (1, AL, Ay, As, . ..

Also,

E;AE;C =EAD
= EE’1
= 0,,E1
€ RE/1.

Akihiro Munemasa (Tohoku University) Codes and Designs 19 /29



(U, AL A2 AR, ) = (1, AL, Ay, As, . ..

Also,
E;AE;C = ErAD
= E'E’1
= 0.,E1
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(I,A;, A2, A3 ...

Also,

Thus

Akihiro Munemasa (Tohoku University)

= (I,A1, Ay, As, . ..

E;AE;C = ErAD
= EE’1
= 0,,E1
€ RE/1.

E;AE;C € REIL,

Codes and Designs
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Also,
E;AE;C = ErAD
= E;E'1
=0, ,E;'1
€ RE/1.
Thus

E;AE;C € REIL,

E;XE;C € RE/L.
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E*AE;C € RE1

Theorem (Assmus—Mattson)
ELADY EC=EA(EC+> EC) (mod RESL) (V)
ieS i>k

and t=k—|[S| = E/A_.» ECEcREL

ieS

Akihiro Munemasa (Tohoku University) Codes and Designs 20 /29



Theorem (Assmus—Mattson)

ELAY EC=EA(EC+> EC) (mod RESL) (V))

i€s i>k

and t=k—|[S| = E/A_.» ECEcREL
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E*AE;C € RE1

Theorem (Assmus—Mattson)

ELADY EC=EA(EC+> EC) (mod RESL) (V)

i€s i>k

and t = k — |S| = E{A_.Y ECecREL

ieS

reduces to

Theorem (Assmus—Mattson)
EEAY EC=EAD> EC (mod RE1) (V)
i€eS i>k

and t =k — |S| = EfA.Y ECcRE1

i€eS
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V =@, EiV: eigenspace decomposition of A;

A1 has |S| eigenvalues on
w=EpEvV.
i€S

Being a polynomial in A;, the matrix A,_; has at most |S]|

eigenvalues on W, so dag, ..., a;sj-1 € Q such that
1S|-1
_ J
At = E ajAy on W.
j=0
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V =@, EiV: eigenspace decomposition of A;

A1 has |S| eigenvalues on
w=EpEV.
i€S

Being a polynomial in A;, the matrix A,_; has at most |S]|

eigenvalues on W, so dag, ..., a;sj-1 € Q such that
IS|-1
_ J
At = E ajAy on W.
Jj=0
So
|S|—-1
J
AktEEC EaJAEEC
ieS €S
Akihiro Munemasa (Tohoku University) Codes and Designs

21 / 29



n S 4 N
Akt 2 ies EiC = Z' 0 a;Ay Djes EiC

Theorem (Assmus—Mattson)

ELAY EC=EAD> EC (mod RES1) (V)
ieS i>k
and t =k — |S| = EfA. Y ECcRE1
ieS |
Proof:
X 15| 5|1
EfA Y EC=E Z A > EC= Z aGE A EC
ieS i€S i€S
IS]—-1 |S|-1
= Z GEAY EC=Y" > a(EAENC
i>k Jj=0 i>k
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End of proof.

Need to show:
|S|-1

Z Z ai(E; A Ef)C = 0.

j=0 i>k
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End of proof.

Need to show:

IS|-1
Z Z ai(E; A Ef)C = 0.
j=0 i>k
Since
o t=k—15|
e 0<j<|S],
o k<.

we have t + j < k < i, and hence E;A,E* = 0 by the triangle
inequality for the Hamming distance. Indeed,

(A))x., = #(paths of length j from x to y)
=0 if wt(x) =t and wt(y) = i.

O
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End of proof.

Need to show:

IS|-1
> a(EfAE)C =0.
j=0 i>k
Since
o t=k—15|
e 0<j<|S],
o k<.

we have t + j < k < i, and hence E;A,E; = 0 by the triangle
inequality for the Hamming distance. Indeed,

(A))x., = #(paths of length j from x to y)
=0 if wt(x) =t and wt(y) = i.
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The Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S = {wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .
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The Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S = {wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .

e C: [24,12,8] binary doubly even self-dual (C = C1) code, so
k =8 and C has only weights 0, 8,12, 16, 24.
S ={wt(x) | x € C*, 0 < wt(x) < 24} = {8,12,16},
t—k—|S|=8-3=5
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Uniqueness of the extended binary Golay code

C: [24,12,8] binary doubly even self-dual (C = C1) code.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24},

B = {supp(x) | x € C, wt(x) = 8},

for some \.
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Uniqueness of the extended binary Golay code

C: [24,12,8] binary doubly even self-dual (C = C1) code.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24},

B = {supp(x) | x € C, wt(x) = 8},

for some .

@ If A > 1, then there are two distinct blocks in B sharing at least
5 (hence 6) points. Their symmetric difference would make a
vector of weight 4 in C, contradicting the fact that C has
minimum weight 8. Thus A = 1.
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Uniqueness of the extended binary Golay code

C: [24,12,8] binary doubly even self-dual (C = C1) code.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24},

B = {supp(x) | x € C, wt(x) = 8},

for some .

@ If A > 1, then there are two distinct blocks in B sharing at least
5 (hence 6) points. Their symmetric difference would make a
vector of weight 4 in C, contradicting the fact that C has
minimum weight 8. Thus A = 1.

@ So C is the binary code of a 5-(24,8,1) design which was
already shown to be unqiue.

This proves the uniqueness of the extended binary Golay code.
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:

larger k = smaller C = larger C* = larger S
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:

larger k = smaller C = larger C* = larger S
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v}

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some .

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:

larger k = smaller C = larger C* = larger S
suppose C = C*, doubly even = S not too large
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S ={wt(x) | x € C, 0 <wt(x) < v},
5=k—|S|.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S ={wt(x) | x € C, 0 <wt(x) < v},
5=k—|S|.

o k=8, |5 =3, 5={81216}, v =24
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S ={wt(x) | x € C, 0 <wt(x) < v},
5=k—|S|.

o k=8,]5=3,5=1{812,16}, v = 24.
o k=12, |5| =7, S = {12,16,20,24,28,32,36}, v = 48.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S ={wt(x) | x € C, 0 <wt(x) < v},
5=k—|S|.

e k=38,1|5|=3,5=1{8,12,16}, v = 24.

e k=12,|S|=7,S ={12,16,20,24,28,32,36}, v = 48.

e k=16, |S| =11, S = {16,20, 24,28, 32, 36, 40, 44,48,52,56},
v=72.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S ={wt(x) | x € C, 0 <wt(x) < v},
5=k—|S|.

o k=8 [S|=3 S={81216}, v =24,
o k=12,|S| =7, S = {12,16,20,24,28,32,36}, v = 48.
o k=16,|S| =11, S = {16,20,24, 28, 32, 36, 40, 44, 48, 52,56},
v=7T2.
In general, Vk: a multiple of 4, |S| = k — 5,

S={k,k+4,k+8,....5k—24=v—k}

v = 6k — 24 = 24m, where k = 4m + 4.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S ={wt(x) | x € C, 0 <wt(x) < v},
5=k—|S|.

o k=8 1S|=3 S={81216}, v = 24.
o k=12,|S| =7, S = {12,16,20,24,28,32,36}, v = 48
o k=16,|S| =11, S = {16,20, 24, 28, 32, 36, 40, 44, 48, 52, 56},
v=7T2.
In general, Vk: a multiple of 4, |S| = k — 5,

S={k,k+4,k+8,....5k—24=v—k}

v = 6k — 24 = 24m, where k = 4m + 4.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m] code has
minimum weight at most 4m + 4.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m] code has
minimum weight at most 4m + 4.

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m] code has
minimum weight at most 4m + 4.

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

For m > 1, an extremal binary doubly even self-dual code gives a
5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.
@ m = 1: the extended binary Golay code and the 5-(24,8,1)
design
e m = 2: Houghten-Lam—-Thiel-Parker (2003): unique [48, 24, 12]
code and a 5-(48, 12, 8) design which is unique under
self-orthogonality.
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Extremal binary doubly even self-dual codes

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

@ For m > 1, an extremal binary doubly even self-dual code gives a
5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.

@ For m > 3, neither a code nor a design is known.

Theorem (Zhang, 1999)

There does not exist an extremal [24m, 12m, 4m + 4] binary doubly
even self-dual code for m > 154.
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