Complex Hadamard matrices and 3-class association schemes

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

(joint work with Takuya Ikuta)

June 26, 2013

The 30th Algebraic Combinatorics Symposium

Shizuoka University

Hadamard matrices and generalizations

• A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^{\top} = nI$.

Conjecture

 \exists Hadamard matrix of order n whenever $n \equiv 0 \pmod{4}$.

Hadamard matrices and generalizations

• A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^{\top} = nI$.

Conjecture

 \exists Hadamard matrix of order n whenever $n \equiv 0 \pmod{4}$.

• A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{\zeta \in \mathbb{C} \mid |\zeta| = 1\}$, satisfying $HH^* = nI$, where * means the conjugate transpose.

Hadamard matrices and generalizations

• A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^{\top} = nI$.

Conjecture

 \exists Hadamard matrix of order n whenever $n \equiv 0 \pmod{4}$.

• A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{\zeta \in \mathbb{C} \mid |\zeta| = 1\}$, satisfying $HH^* = nI$, where * means the conjugate transpose.

We propose a strategy to construct infinite families of complex Hadamard matrices using association schemes, and demonstrate a successful case.

Circulant (complex) Hadamard matrices

$$H = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & & \\ & \ddots & \ddots & \ddots & \\ a_1 & & & a_0 \end{bmatrix} = \sum_{i=0}^{n-1} a_i A^i, \quad A = \begin{bmatrix} & 1 & & \\ & & 1 & & \\ & & & \ddots & \\ 1 & & & & \end{bmatrix}$$

Instead of n^2 entries, there are only n entries to determine.

Circulant (complex) Hadamard matrices

$$H = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & & \\ & \ddots & \ddots & \ddots & \\ a_1 & & & a_0 \end{bmatrix} = \sum_{i=0}^{n-1} a_i A^i, \quad A = \begin{bmatrix} & 1 & & \\ & & 1 & & \\ & & & \ddots & \\ 1 & & & & \end{bmatrix}$$

Instead of n^2 entries, there are only n entries to determine.

Björck–Fröberg (1991–1992) circulant Hadamard, $n \le 8$ Faugère (2001), (2004) circulant Hadamard, n = 9, 10

Circulant (complex) Hadamard matrices

$$H = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & & \\ & \ddots & \ddots & \ddots & \\ a_1 & & & a_0 \end{bmatrix} = \sum_{i=0}^{n-1} a_i A^i, \quad A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ 1 & & & \end{bmatrix}$$

Instead of n^2 entries, there are only n entries to determine.

Björck-Fröberg (1991–1992) circulant Hadamard, $n \le 8$ Faugère (2001), (2004) circulant Hadamard, n = 9, 10

On the other hand, it is conjectured that no circulant real Hadamard matrix of order >4 exists.

de la Harpe–Jones (1990) SRG n: prime $\equiv 1 \pmod{4} \rightarrow$ symmetric circulant complex Hadamard

de la Harpe-Jones (1990) SRG n: prime $\equiv 1 \pmod 4 \rightarrow$ symmetric circulant complex Hadamard

M.-Watatani (1992) DRT n: prime $\equiv 3 \pmod{4} \rightarrow$ non-symmetric circulant complex Hadamard

de la Harpe-Jones (1990) SRG n: prime $\equiv 1 \pmod 4 \to \text{symmetric circulant complex Hadamard}$

M.-Watatani (1992) DRT n: prime $\equiv 3 \pmod{4} \rightarrow$ non-symmetric circulant complex Hadamard

$$H = \alpha_0 A_0 + \alpha_1 A_1 + \alpha_2 A_2, \quad A_0 = I$$

de la Harpe–Jones (1990) SRG n: prime \equiv 1 $\pmod{4} \rightarrow$ symmetric circulant complex Hadamard

M.-Watatani (1992) DRT n: prime $\equiv 3 \pmod{4} \rightarrow$ non-symmetric circulant complex Hadamard

$$H = \alpha_0 A_0 + \alpha_1 A_1 + \alpha_2 A_2, \quad A_0 = I$$

$$A_1^ op = A_1, \ A_2^ op = A_2 \quad ext{(G.-J., de la H.-J.)}$$
 $A_1^ op = A_2, \quad ext{(M.-W.)}$

de la Harpe–Jones (1990) SRG n: prime $\equiv 1 \pmod{4} \rightarrow$ symmetric circulant complex Hadamard

M.-Watatani (1992) DRT n: prime $\equiv 3 \pmod{4} \rightarrow$ non-symmetric circulant complex Hadamard

$$H = \alpha_0 A_0 + \alpha_1 A_1 + \alpha_2 A_2, \quad A_0 = I$$

$$A_1^{ op}=A_1,\ A_2^{ op}=A_2$$
 (G.-J., de la H.-J.) $A_1^{ op}=A_2,$ (M.-W.)

Unifying principle: association schemes. (strongly regular graphs is a special case)

Godsil-Chan (2010), and Chan (2011) classified complex Hadamard matrices of the form:

$$H = \alpha_0 I + \alpha_1 A_1 + \alpha_2 A_2$$
 (we may assume $\alpha_0 = 1$)

 $A_2 = \text{adjacency matrix of } \overline{\Gamma}.$

where $|\alpha_1| = |\alpha_2| = 1$, and

where
$$|lpha_1|=|lpha_2|=1$$
, and
$$A_1={\sf adjacency\ matrix\ of\ a\ SRG\ \Gamma},$$

Godsil-Chan (2010), and Chan (2011) classified complex Hadamard matrices of the form:

$$H = \alpha_0 I + \alpha_1 A_1 + \alpha_2 A_2$$
 (we may assume $\alpha_0 = 1$)

 $A_2 = \text{adjacency matrix of } \overline{\Gamma}.$

where $|\alpha_1| = |\alpha_2| = 1$, and

where
$$|lpha_1|=|lpha_2|=1$$
, and
$$A_1={\sf adjacency\ matrix\ of\ a\ SRG\ \Gamma},$$

Godsil–Chan (2010), and Chan (2011) classified complex Hadamard matrices of the form:

$$H = \alpha_0 I + \alpha_1 A_1 + \alpha_2 A_2$$
 (we may assume $\alpha_0 = 1$)

where $|\alpha_1| = |\alpha_2| = 1$, and

$$A_1=$$
 adjacency matrix of a SRG Γ , $A_2=$ adjacency matrix of $\overline{\Gamma}.$

also found a complex Hadamard matrix of the form

$$H = I + \alpha_1 A_1 + \alpha_2 A_2 + \alpha_3 A_3$$

of order 15 from the line graph $L(O_3)$ of the Petersen graph O_3 .

The Bose–Mesner algebra of a symmetric association scheme of class d

$$\langle A_0, A_1, \dots, A_d \rangle = \langle E_0, E_1, \dots, E_d \rangle$$

is a commutative semisimple algebra with primitive idempotents E_0, E_1, \dots, E_d .

$$\sum_{i=0}^{d} A_i = J, \quad \sum_{i=0}^{d} E_i = I, \quad A_0 = I, \ nE_0 = J.$$

$$A_i \circ A_k = \delta_{ik} A_i, \quad E_i E_k = \delta_{ik} E_i$$

The Bose–Mesner algebra of a symmetric association scheme of class d

$$\langle A_0, A_1, \dots, A_d \rangle = \langle E_0, E_1, \dots, E_d \rangle$$

is a commutative semisimple algebra with primitive idempotents E_0, E_1, \ldots, E_d .

$$\sum_{i=0}^{d} A_i = J, \quad \sum_{i=0}^{d} E_i = I, \quad A_0 = I, \ nE_0 = J.$$

$$A_i \circ A_k = \delta_{ik} A_i, \quad E_i E_k = \delta_{ik} E_i$$

$$A_j = \sum_{i=1}^d p_{ij} E_i, \quad A_i^{\mathsf{T}} = A_i \quad (\forall i), \implies p_{ji} \in \mathbb{R}.$$

The Bose–Mesner algebra of a symmetric association scheme of class \boldsymbol{d}

$$\langle A_0, A_1, \dots, A_d \rangle = \langle E_0, E_1, \dots, E_d \rangle$$

is a commutative semisimple algebra with primitive idempotents E_0, E_1, \ldots, E_d .

$$\sum_{i=0}^{d} A_i = J, \quad \sum_{i=0}^{d} E_i = I, \quad A_0 = I, \ nE_0 = J.$$

$$A_i \circ A_k = \delta_{ik} A_i, \quad E_i E_k = \delta_{ik} E_i$$

$$A_j = \sum_{i=1}^{a} p_{ij} E_i, \quad A_i^{\top} = A_i \quad (\forall i), \implies p_{ji} \in \mathbb{R}.$$

$$A_i = \sum_{k=1}^{a} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

When is
$$H = \sum_{i=0}^d \alpha_i A_i$$
 with $|\alpha_i| = 1$ a complex Hadamard

$$HH^* = nI \iff$$

$$\Pi\Pi = \Pi I \Leftarrow$$

$$\iff$$

$$\iff$$

$$\iff$$

$$A_i = \sum_{k=1}^{a} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

When is $H = \sum \alpha_i {\color{black} A_i}$ with $|\alpha_i| = 1$ a complex Hadamard

matrix?
$$H\overline{H} = nI \iff (\sum_{i=0}^d \alpha_i \sum_{k=0}^d p_{ki} E_k)(\sum_{j=0}^d \alpha_j \sum_{k=0}^d p_{kj} E_k) = nI$$

$$\iff$$

$$\iff$$

$$\Longrightarrow$$

$$A_i = \sum_{k=1}^{a} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

$$\begin{aligned} & \text{matrix?} \\ & H\overline{H} = nI \iff (\sum_{i=0}^d \alpha_i \sum_{k=0}^d p_{ki} E_k) (\sum_{j=0}^d \alpha_j \sum_{k=0}^d p_{kj} E_k) = nI \end{aligned}$$

$$\iff$$

$$\iff$$

$$\Longrightarrow$$

$$A_i = \sum_{k=1}^{a} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

matrix?
$$H = nI \iff (\sum_{i=0}^{d} \alpha_i \sum_{k=0}^{d} p_{ki} E_k) (\sum_{j=0}^{d} \overline{\alpha_j} \sum_{k=0}^{d} p_{kj} E_k) = nI$$

$$\iff$$

$$\iff$$

$$A_i = \sum_{k=1}^{n} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

When is
$$H=\sum_{i=0}^{d}\alpha_{i}A_{i}$$
 with $|\alpha_{i}|=1$ a complex Hadamard matrix?
$$H=nI\iff (\sum_{i=0}^{d}\alpha_{i}\sum_{k=0}^{d}p_{ki}E_{k})(\sum_{j=0}^{d}\overline{\alpha_{j}}\sum_{k=0}^{d}p_{kj}E_{k})=nI$$
 $\iff \sum_{k=0}^{d}\sum_{i=0}^{d}\sum_{j=0}^{d}\alpha_{i}\overline{\alpha_{j}}p_{ki}p_{kj}E_{k}=nI$

$$\iff \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha_i \overline{\alpha_j} p_{ki} p_{kj} E_k = nI$$

$$\iff$$

$$A_i = \sum_{k=1}^{n} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

$$\begin{aligned} & \underset{i=0}{\operatorname{matrix?}} \\ & H = nI \iff (\sum_{i=0}^{d} \alpha_i \sum_{k=0}^{d} p_{ki} E_k) (\sum_{j=0}^{d} \overline{\alpha_j} \sum_{k=0}^{d} p_{kj} E_k) = nI \\ & \iff \sum_{i=0}^{d} \sum_{k=0}^{d} \alpha_i \overline{\alpha_j} p_{ki} p_{kj} \underline{E_k} = nI = n \sum_{i=0}^{d} \underline{E_k} \end{aligned}$$

$$\iff \sum_{k=0} \sum_{i=0} \sum_{j=0} \alpha_i \overline{\alpha_j} p_{ki} p_{kj} \mathbf{E}_k = nI = n \sum_{k=0}$$

$$\iff$$

$$A_i = \sum_{k=1}^{n} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

$$\begin{aligned} & \underset{\overline{i=0}}{\operatorname{matrix?}} \\ & H = nI \iff (\sum_{i=0}^{d} \alpha_i \sum_{k=0}^{d} p_{ki} E_k) (\sum_{j=0}^{d} \overline{\alpha_j} \sum_{k=0}^{d} p_{kj} E_k) = nI \\ & \iff \sum_{i=0}^{d} \sum_{k=0}^{d} \alpha_i \overline{\alpha_j} p_{ki} p_{kj} E_k = nI = n \sum_{i=0}^{d} E_k \end{aligned}$$

$$\iff \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_i \overline{\alpha_j} p_{ki} p_{kj} = n \quad (\forall k)$$

$$A_i = \sum_{k=1}^{n} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

When is
$$H = \sum_{i=0}^{d} \alpha_i A_i$$
 with $|\alpha_i| = 1$ a complex Hadamard matrix?
$$H = nI \iff (\sum_{i=0}^{d} \alpha_i \sum_{k=0}^{d} p_{ki} E_k) (\sum_{j=0}^{d} \overline{\alpha_j} \sum_{k=0}^{d} p_{kj} E_k) = nI$$

$$\iff \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_i \overline{\alpha_j} p_{ki} p_{kj} E_k = nI = n \sum_{k=0}^{d} E_k$$

$$\iff \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_i}{\alpha_j} p_{ki} p_{kj} = n \quad (\forall k)$$

$$A_i = \sum_{k=1}^{n} p_{ki} E_k, \quad E_j E_k = \delta_{jk} E_j, \quad p_{ki} \in \mathbb{R}.$$

when is
$$H = \sum_{i=0}^{d} \alpha_i A_i$$
 with $|\alpha_i| = 1$ a complex Hadamard matrix?

matrix?
$$H = nI \iff (\sum_{i=0}^{d} \alpha_i \sum_{k=0}^{d} p_{ki} E_k)(\sum_{j=0}^{d} \overline{\alpha_j} \sum_{k=0}^{d} p_{kj} E_k) = nI$$

$$\iff \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_i \overline{\alpha_j} p_{ki} p_{kj} E_k = nI = n \sum_{k=0}^{d} E_k$$

$$\iff \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_i}{\alpha_j} p_{ki} p_{kj} = n \quad (\forall k)$$

$$\iff \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \overline{\alpha_{j}} p_{ki} p_{kj} E_{k} = nI = n \sum_{k=0}^{d} E_{k}$$

$$\iff \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_{i}}{\alpha_{j}} p_{ki} p_{kj} = n \quad (\forall k)$$

$$\iff \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_{i}}{\alpha_{j}} p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^{2} (\forall k)$$

$$\iff \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_{i}}{\alpha_{j}} p_{ki} p_{kj} = n \quad (\forall k)$$

$$\iff \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_{i}}{\alpha_{j}} p_{ki} p_{kj} = n \quad (\forall k)$$

$$\iff \sum_{0 \leq i < j \leq d} \left(\frac{\alpha_{i}}{\alpha_{j}} + \frac{\alpha_{j}}{\alpha_{i}} \right) p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^{2} \quad (\forall k)$$

$$a_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d). \tag{1}$$

$$\sum_{0 \le i < j \le d} \mathbf{a}_{ij} p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^{2} \quad (\forall k)$$
 (2)

$$a_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d).$$

$$\sum_{0 \le i < j \le d} \mathbf{a}_{ij} p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^2 \quad (\forall k)$$
 (2)

(1)

Step 1 Solve the system of linear equations (2) in $\{a_{ij}\}$ Step 2 Find $\{\alpha_i\}$ from $\{a_{ij}\}$ by (1).

$$a_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d).$$

$$\sum_{0 \le i < j \le d} \frac{a_{ij}}{a_{ij}} p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^2 \quad (\forall k)$$
 (2)

(1)

Step 1 Solve the system of linear equations (2) in $\{a_{ij}\}$ Step 2 Find $\{\alpha_i\}$ from $\{a_{ij}\}$ by (1).

Problem: Given $\{a_{ij}\}$, when $\exists \{\alpha_i\}$ satisfying (1)?

$$\mathbf{a}_{ij} = \frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d). \tag{1}$$

$$\sum_{0 \le i \le j \le d} \mathbf{a_{ij}} p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^2 \quad (\forall k)$$
 (2)

Step 1 Solve the system of linear equations (2) in $\{a_{ij}\}$ Step 2 Find $\{\alpha_i\}$ from $\{a_{ij}\}$ by (1).

Problem: Given $\{a_{ij}\}$, when $\exists \{\alpha_i\}$ satisfying (1)?

$$f: (S^1)^{d+1} \to \mathbb{R}^{d(d+1)/2},$$

$$\{\alpha_i\}_{i=0}^d \mapsto \{\frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i}\}_{0 \le i < j < d}.$$

where $S^1 = \{ \zeta \in \mathbb{C} \mid |\zeta| = 1 \}.$

$$\mathbf{a}_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d). \tag{1}$$

$$\sum_{0 \le i \le j \le d} \mathbf{a}_{ij} p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^{2} \quad (\forall k)$$
 (2)

Step 1 Solve the system of linear equations (2) in $\{a_{ij}\}$ Step 2 Find $\{\alpha_i\}$ from $\{a_{ij}\}$ by (1).

Problem: Given $\{a_{ij}\}$, when $\exists \{\alpha_i\}$ satisfying (1)?

$$f: (S^1)^{d+1} \to \mathbb{R}^{d(d+1)/2},$$

$$\{\alpha_i\}_{i=0}^d \mapsto \{\frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i}\}_{0 \le i < j < d}.$$

where $S^1 = \{ \zeta \in \mathbb{C} \mid |\zeta| = 1 \}$. Describe image of f

$$\begin{array}{cccc} f: (\overset{\mathbb{C}^{\times}}{})^{d+1} & \to & \overset{\mathbb{C}}{}^{d(d+1)/2}, \\ & \{\alpha_i\}_{i=0}^d & \mapsto & \{\frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i}\}_{0 \leq i < j < d}. \end{array}$$

Describe the image of f. For example, for d = 2:

$$f: (\mathbb{C}^{\times})^{d+1} \to \mathbb{C}^{d(d+1)/2},$$
$$\{\alpha_i\}_{i=0}^d \mapsto \{\frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i}\}_{0 \le i < j < d}.$$

Describe the image of f. For example, for d = 2:

$$f: (\mathbb{C}^{\times})^3 \to \mathbb{C}^3, (x, y, z) \mapsto (\frac{x}{y} + \frac{y}{x}, \frac{x}{z} + \frac{z}{x}, \frac{y}{z} + \frac{z}{y})$$

$$\begin{array}{cccc} f: (\mathbb{C}^{\times})^{d+1} & \to & \mathbb{C}^{d(d+1)/2}, \\ & \{\alpha_i\}_{i=0}^d & \mapsto & \{\frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i}\}_{0 \leq i < j < d}. \end{array}$$

Describe the image of f. For example, for d=2:

$$\begin{array}{ccc} f: (\mathbb{C}^{\times})^3 & \to & \mathbb{C}^3, \\ (x, y, z) & \mapsto & \left(\frac{x}{y} + \frac{y}{x}, \frac{x}{z} + \frac{z}{x}, \frac{y}{z} + \frac{z}{y}\right) \end{array}$$

Not surjective.

$$f: (\overset{\mathbb{C}^{\times}}{})^{d+1} \to \overset{\mathbb{C}^{d(d+1)/2}}{}, \\ \{\alpha_i\}_{i=0}^d \mapsto \{\frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i}\}_{0 \le i < j < d}.$$

Describe the image of f. For example, for d=2:

$$f: (\mathbb{C}^{\times})^3 \to \mathbb{C}^3, (x, y, z) \mapsto (\frac{x}{y} + \frac{y}{x}, \frac{x}{z} + \frac{z}{x}, \frac{y}{z} + \frac{z}{y})$$

Not surjective. $g(X, Y, Z) = X^2 + Y^2 + Z^2 - XYZ - 4$.

$$g(\frac{x}{y} + \frac{y}{x}, \frac{x}{z} + \frac{z}{x}, \frac{y}{z} + \frac{z}{y}) = 0$$

Instead of considering $f: (S^1)^{d+1} \to \mathbb{R}^{d(d+1)/2}$, consider

$$\begin{array}{cccc} f: (\overset{\mathbb{C}^{\times}}{})^{d+1} & \to & \overset{\mathbb{C}^{d(d+1)/2}}{}, \\ & \{\alpha_i\}_{i=0}^d & \mapsto & \{\frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i}\}_{0 \leq i < j < d}. \end{array}$$

Describe the image of f. For example, for d=2:

$$f: (\mathbb{C}^{\times})^3 \to \mathbb{C}^3, (x, y, z) \mapsto (\frac{x}{y} + \frac{y}{x}, \frac{x}{z} + \frac{z}{x}, \frac{y}{z} + \frac{z}{y})$$

Not surjective. $g(X, Y, Z) = X^2 + Y^2 + Z^2 - XYZ - 4$.

$$g(\frac{x}{y} + \frac{y}{x}, \frac{x}{z} + \frac{z}{x}, \frac{y}{z} + \frac{z}{y}) = 0$$

Indeed, image of f = zeros of g.

$$f: (\mathbb{C}^{\times})^{4} \to \mathbb{C}^{6},$$

$$(x_{0}, x_{1}, x_{2}, x_{3}) \mapsto (\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}})_{0 \leq i < j \leq 3}$$

$$f: (\mathbb{C}^{\times})^{4} \to \mathbb{C}^{6},$$

$$(x_{0}, x_{1}, x_{2}, x_{3}) \mapsto (\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}})_{0 \leq i < j \leq 3}$$

$$g(X, Y, Z) = X^{2} + Y^{2} + Z^{2} - XYZ - 4.$$

 $g_{i,j,k} = g(\frac{x_i}{x_i} + \frac{x_j}{x_i}, \frac{x_i}{x_k} + \frac{x_k}{x_i}, \frac{x_j}{x_k} + \frac{x_k}{x_i}) = 0$

$$f: (\mathbb{C}^{\times})^{4} \to \mathbb{C}^{6},$$

$$(x_{0}, x_{1}, x_{2}, x_{3}) \mapsto (\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}})_{0 \leq i < j \leq 3}$$

$$g(X, Y, Z) = X^{2} + Y^{2} + Z^{2} - XYZ - 4.$$

$$g_{i}$$

$$g_{i,j}$$

$$g_{i,j}$$

 $g_{i,j,k} = g(\frac{x_i}{x_i} + \frac{x_j}{x_i}, \frac{x_i}{x_k} + \frac{x_k}{x_i}, \frac{x_j}{x_k} + \frac{x_k}{x_i}) = 0$

image of $f \stackrel{?}{=} zeros$ of $\{q_{i,i,k}\}$.

$$f: (\mathbb{C}^{\times})^{4} \to \mathbb{C}^{6},$$

$$(x_{0}, x_{1}, x_{2}, x_{3}) \mapsto (\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}})_{0 \leq i < j \leq 3}$$

$$q(X, Y, Z) = X^{2} + Y^{2} + Z^{2} - XYZ - 4.$$

$$g(X,Y,Z) =$$

image of $f \neq \text{zeros of } \{q_{i,i,k}\}.$

$$g_{i,j,k} = g(\frac{x_i}{x_j} + \frac{x_j}{x_i}, \frac{x_i}{x_k} + \frac{x_k}{x_i}, \frac{x_j}{x_k} + \frac{x_k}{x_j}) = 0$$

$$f: (\mathbb{C}^{\times})^{4} \to \mathbb{C}^{6},$$

$$(x_{0}, x_{1}, x_{2}, x_{3}) \mapsto (\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}})_{0 \leq i < j \leq 3}$$

$$g(X, Y, Z) = X^{2} + Y^{2} + Z^{2} - XYZ - 4.$$

$$g_{i,j,k} = g(\frac{x_i}{x_j} + \frac{x_j}{x_i}, \frac{x_i}{x_k} + \frac{x_k}{x_i}, \frac{x_j}{x_k} + \frac{x_k}{x_j}) = 0$$

image of $f \neq \text{zeros of } \{g_{i,j,k}\}$. Need

$$+2(X_{01}X_{02}+X_{13}X_{23}) (X_{ij}=\frac{x_i}{x_j}+\frac{x_j}{x_i})$$

 $h = (X_{03}^2 - 4)X_{12} - X_{03}(X_{01}X_{23} + X_{02}X_{13})$

(and similar polynomials obtained by permuting indices)

$$f: (\mathbb{C}^{\times})^{4} \to \mathbb{C}^{6},$$

$$(x_{0}, x_{1}, x_{2}, x_{3}) \mapsto (\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}})_{0 \leq i < j \leq 3}$$

$$q(X, Y, Z) = X^2 + Y^2 + Z^2 - XYZ - 4.$$

$$g_{i,j,k} = g(\frac{x_i}{x_j} + \frac{x_j}{x_i}, \frac{x_i}{x_k} + \frac{x_k}{x_i}, \frac{x_j}{x_k} + \frac{x_k}{x_j}) = 0$$

image of $f \neq \text{zeros of } \{g_{i,i,k}\}$. Need

$$h = (X_{03}^2 - 4)X_{12} - X_{03}(X_{01}X_{23} + X_{02}X_{13})$$

+ $2(X_{01}X_{02} + X_{13}X_{23}) (X_{ij} = \frac{x_i}{x_i} + \frac{x_j}{x_i})$

(and similar polynomials obtained by permuting indices) image of f = zeros of g, h.

$$f: (\mathbb{C}^{\times})^{4} \to \mathbb{C}^{6},$$

$$(x_{0}, x_{1}, x_{2}, x_{3}) \mapsto (\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}})_{0 \leq i < j \leq 3}$$

$$q(X, Y, Z) = X^2 + Y^2 + Z^2 - XYZ - 4.$$

$$g_{i,j,k} = g(\frac{x_i}{x_j} + \frac{x_j}{x_i}, \frac{x_i}{x_k} + \frac{x_k}{x_i}, \frac{x_j}{x_k} + \frac{x_k}{x_j}) = 0$$

image of $f \neq \text{zeros of } \{g_{i,j,k}\}$. Need

$$h = (X_{03}^2 - 4)X_{12} - X_{03}(X_{01}X_{23} + X_{02}X_{13})$$

+ $2(X_{01}X_{02} + X_{13}X_{23}) (X_{ij} = \frac{x_i}{x_i} + \frac{x_j}{x_i})$

(and similar polynomials obtained by permuting indices) image of f = zeros of g, h.

The same is true for $\forall m \geq 4$.

Theorem

$$f: (\mathbb{C}^{\times})^{d+1} \to \mathbb{C}^{d(d+1)/2},$$
$$(\alpha_0, \alpha_1, \dots, \alpha_d) \mapsto (\frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i})_{0 \le i < j \le d}$$

The image of f coincides with the set of zeros of the ideal I in the polynomial ring $\mathbb{C}[X_{ij}:0\leq i< j\leq d]$ generated by

$$g(X_{ij}, X_{ik}, X_{jk})$$

$$h(X_{ij}, X_{ik}, X_{il}, X_{jk}, X_{jl}, X_{kl})$$

where i, j, k, l are distinct, $X_{ij} = X_{ji}$, and

$$g = X^{2} + Y^{2} + Z^{2} - XYZ - 4,$$

$$h = (Z^{2} - 4)U - Z(XW + YV) + 2(XY + VW).$$

Given a zero (a_{ij}) of the ideal I, we know that there exists

Given a zero
$$(a_{ij})$$
 of the ideal T , we know that there exists $(lpha_i) \in (\mathbb{C}^{ imes})^{d+1}$ such that

 $\mathbf{a}_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d).$

(1)

Given a zero (a_{ij}) of the ideal I, we know that there exists $(\alpha_i) \in (\mathbb{C}^{\times})^{d+1}$ such that

$$a_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d). \tag{1}$$

How do we find (α_i) , and when does $(\alpha_i) \in (S^1)^{d+1}$ hold?

Given a zero (a_{ij}) of the ideal I, we know that there exists $(\alpha_i) \in (\mathbb{C}^{\times})^{d+1}$ such that

$$a_{ij} = rac{lpha_i}{lpha_i} + rac{lpha_j}{lpha_i} \quad (0 \leq i < j \leq d).$$

(1)

How do we find (α_i) , and when does $(\alpha_i) \in (S^1)^{d+1}$ hold? Observe, for $\alpha \in \mathbb{C}^{\times}$.

$$|\alpha| = 1 \iff -2 \le \alpha + \frac{1}{\alpha} \le 2.$$

Given a zero (a_{ij}) of the ideal I, we know that there exists $(\alpha_i) \in (\mathbb{C}^{\times})^{d+1}$ such that

$$a_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d). \tag{1}$$

How do we find (α_i) , and when does $(\alpha_i) \in (S^1)^{d+1}$ hold? Observe, for $\alpha \in \mathbb{C}^{\times}$.

$$|\alpha| = 1 \iff -2 \le \alpha + \frac{1}{\alpha} \le$$

$$|\alpha| = 1 \iff -2 \le \alpha + \frac{1}{\alpha} \le 2.$$

Given a zero (a_{ij}) of the ideal I, we know that there exists $(\alpha_i) \in (\mathbb{C}^{\times})^{d+1}$ such that

$$a_{ij} = \frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d). \tag{1}$$

How do we find (α_i) , and when does $(\alpha_i) \in (S^1)^{d+1}$ hold? Observe, for $\alpha \in \mathbb{C}^{\times}$,

$$|\alpha| = 1 \iff -2 \le \alpha + \frac{1}{\alpha} \le 2.$$

So we need $-2 \le a_{ij} \le 2$.

Given a zero (a_{ij}) of the ideal I, we know that there exists $(\alpha_i) \in (\mathbb{C}^{\times})^{d+1}$ such that

$$a_{ij} = \frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} \quad (0 \le i < j \le d). \tag{1}$$

How do we find (α_i) , and when does $(\alpha_i) \in (S^1)^{d+1}$ hold? Observe, for $\alpha \in \mathbb{C}^{\times}$,

$$|\alpha| = 1 \iff -2 \le \alpha + \frac{1}{\alpha} \le 2.$$

So we need $-2 \le a_{ij} \le 2$.

Moreover, if $a_{ij} \in \{\pm 2\}$ for all i, j, then $\alpha_i = \pm \alpha_j$ so the resulting matrix is a scalar multiple of a real Hadamard matrix \rightarrow Goethals–Seidel (1970).

Theorem

$$f: (\mathbb{C}^{\times})^{d+1} \to \mathbb{C}^{d(d+1)/2},$$
$$(\alpha_0, \alpha_1, \dots, \alpha_d) \mapsto (\frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i})_{0 \le i < j \le d}$$

Suppose $(a_{ij}) \in$ the image of f, $a_{ij} \in \mathbb{R}$, and there exists $0 \le i_0 < i_1 \le d$ such that $-2 < a_{i_0,i_1} < 2$. Let $\alpha_{i_0}, \alpha_{i_1}$ be

$$a_{i_0,i_1} = \frac{\alpha_{i_0}}{\alpha_{i_1}} + \frac{\alpha_{i_1}}{\alpha_{i_0}}$$

Define α_i ($0 \le i \le n$, $i \ne i_0, i_1$) by $\alpha_i = \frac{\alpha_{i_0}(a_{i_0,i_1}\alpha_{i_1} - 2\alpha_{i_0})}{a_{i_1,i}\alpha_{i_1} - a_{i_0,i}\alpha_{i_0}}.$

Then
$$|lpha_i|=|lpha_j|$$
 and

 $\frac{\alpha_i}{\alpha_j} + \frac{\alpha_j}{\alpha_i} = a_{ij} \quad (0 \le i < j \le d).$ and every (α_i) satisfying (1) is obtained in this way.

(1)

Theorem

$$f: (\mathbb{C}^{\times})^{d+1} \to \mathbb{C}^{d(d+1)/2},$$
$$(\alpha_0, \alpha_1, \dots, \alpha_d) \mapsto (\frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i})_{0 \le i \le j \le d}$$

Suppose $(a_{ij}) \in \text{the image of } f, a_{ij} \in \mathbb{R}$, and there exists $0 \le i_0 < i_1 \le d$ such that $-2 < a_{i_0,i_1} < 2$. Let $\alpha_{i_0}, \alpha_{i_1}$ be

$$0 \le i_0 < i_1 \le d \text{ such that } \frac{-2}{-2} < \frac{a_{i_0,i_1}}{\alpha_{i_0}} < \frac{2}{\alpha_{i_0}}. \text{ Let } \alpha_{i_0}, \alpha_{i_1} \text{ be}$$

$$a_{i_0,i_1} = \frac{\alpha_{i_0}}{\alpha_{i_1}} + \frac{\alpha_{i_1}}{\alpha_{i_0}} = \frac{\alpha_{i_0}}{\alpha_{i_1}} + \left(\frac{\alpha_{i_0}}{\alpha_{i_1}}\right)^{-1}$$

(1)

Define α_i (0 < i < n, $i \neq i_0, i_1$) by $\alpha_i = \frac{\alpha_{i_0}(a_{i_0,i_1}\alpha_{i_1} - 2\alpha_{i_0})}{a_{i_1,i}\alpha_{i_1} - a_{i_0,i}\alpha_{i_0}}.$

Then
$$|\alpha_i|=|lpha_j|$$
 and

 $\frac{\alpha_i}{\alpha_i} + \frac{\alpha_j}{\alpha_i} = a_{ij} \quad (0 \le i < j \le d).$ and every (α_i) satisfying (1) is obtained in this way.

The procedure

Step 1 Solve the system of equations

$$g(X_{ij}, X_{ik}, X_{jk}) = 0,$$

$$h(X_{ij}, X_{ik}, X_{il}, X_{jk}, X_{jl}, X_{kl}) = 0,$$

$$\sum_{0 \le i \le j \le d} X_{ij} p_{ki} p_{kj} = n - \sum_{i=0}^{d} p_{ki}^{2}$$

Step 2 List all solutions a_{ij} with $-2 \le a_{ij} \le 2$.

Step 3 Find (α_i) by

$$\alpha_i = \frac{\alpha_{i_0}(a_{i_0,i_1}\alpha_{i_1} - 2\alpha_{i_0})}{a_{i_1,i}\alpha_{i_1} - a_{i_0,i}\alpha_{i_0}}.$$

where $a_{i_0,i_1} \neq \pm 2$,

$$\frac{\alpha_{i_0}}{\alpha_{i_1}} + \frac{\alpha_{i_1}}{\alpha_{i_0}} = a_{i_0, i_1}.$$

Step 1 Solve the system of equations Step 2 List all solutions a_{ij} with $-2 \le a_{ij} \le 2$, Step 3 Find (α_i)

Step 1 Solve the system of equations

Step 2 List all solutions a_{ij} with $-2 \le a_{ij} \le 2$,

Step 3 Find (α_i)

In many known examples of association schemes with d=3, Step 2 failed.

Step 1 Solve the system of equations

Step 2 List all solutions a_{ij} with $-2 \le a_{ij} \le 2$,

Step 3 Find (α_i)

In many known examples of association schemes with d=3, Step 2 failed.

Theorem (Chan, arXiv:1102.5601v1)

There are only finitely many antipodal distance-regular graphs of diameter 3 whose Bose–Mesner algebra contains a complex Hadamard matrix.

Step 1 Solve the system of equations

Step 2 List all solutions a_{ij} with $-2 \le a_{ij} \le 2$,

Step 3 Find (α_i)

In many known examples of association schemes with d=3, Step 2 failed.

Theorem (Chan, arXiv:1102.5601v1)

There are only finitely many antipodal distance-regular graphs of diameter 3 whose Bose–Mesner algebra contains a complex Hadamard matrix.

But Chan did find an example. $L(O_3)$: the line graph of the Petersen graph.

• q: a power of 2, q > 4. • $\Omega = PG(2,q)$: the projective plane over \mathbb{F}_q ,

• $|X| = q^2 - 1$.

- $Q = \{[a_0, a_1, a_2] \in \Omega \mid a_0^2 + a_1 a_2 = 0\}$: quadric,
- $X = \{[a_0, a_1, a_2] \in \Omega \setminus Q \mid [a_0, a_1, a_2] \neq [1, 0, 0]\},\$

- q: a power of 2, q > 4,
- $\Omega = \mathrm{PG}(2,q)$: the projective plane over \mathbb{F}_q ,
- $Q = \{[a_0, a_1, a_2] \in \Omega \mid a_0^2 + a_1 a_2 = 0\}$: quadric,
- $\bullet \ X = \{[a_0,a_1,a_2] \in \Omega \setminus Q \mid [a_0,a_1,a_2] \neq [1,0,0]\},$
- $|X| = q^2 1$.

For $x, y \in X$, denote by x + y the line through x, y.

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } i = 0, \ x = y, \\ 1 & \text{if } i = 1, \ |(x+y) \cap Q| = 2, \\ 1 & \text{if } i = 2, \ |(x+y) \cap Q| = 0, \\ 1 & \text{if } i = 3, \ |(x+y) \cap Q| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

 \exists a complex Hadamard matrix in its Bose–Mesner algebra.

- q: a power of 2, q > 4,
- $\Omega = \mathrm{PG}(2,q)$: the projective plane over \mathbb{F}_q ,
- $Q = \{[a_0, a_1, a_2] \in \Omega \mid a_0^2 + a_1 a_2 = 0\}$: quadric,
- $\bullet \ X = \{[a_0,a_1,a_2] \in \Omega \setminus Q \mid [a_0,a_1,a_2] \neq [1,0,0]\},$
- $|X| = q^2 1$.

For $x, y \in X$, denote by x + y the line through x, y.

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } i = 0, \ x = y, \\ 1 & \text{if } i = 1, \ |(x+y) \cap Q| = 2, \\ 1 & \text{if } i = 2, \ |(x+y) \cap Q| = 0, \\ 1 & \text{if } i = 3, \ |(x+y) \cap Q| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

 \exists a complex Hadamard matrix in its Bose–Mesner algebra.

- q: a power of 2, $q > 4 \rightarrow q = 4$,
- $\bullet \ \Omega = \mathrm{PG}(2,q)$: the projective plane over \mathbb{F}_q ,
- $Q = \{[a_0, a_1, a_2] \in \Omega \mid a_0^2 + a_1 a_2 = 0\}$: quadric,
- $X = \{[a_0, a_1, a_2] \in \Omega \setminus Q \mid [a_0, a_1, a_2] \neq [1, 0, 0]\},\$
- $|X| = q^2 1 \to 15$.

For $x, y \in X$, denote by x + y the line through x, y.

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } i = 0, \ x = y, \\ 1 & \text{if } i = 1, \ |(x+y) \cap Q| = 2, \\ 1 & \text{if } i = 2, \ |(x+y) \cap Q| = 0, \\ 1 & \text{if } i = 3, \ |(x+y) \cap Q| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

 \exists a complex Hadamard matrix in $L(O_3)$.

Theorem

The matrix $H = I + \alpha_1 A_1 + \alpha_2 A_2 + \alpha_3 A_3$ is a complex Hadamard matrix if and only if

(i) H belongs to the subalgebra forming the Bose–Mesner algebra of a strongly regular graph (precise description omitted, already done by Chan–Godsil),

$$\alpha_1 + \frac{1}{\alpha_1} = -\frac{2}{q}, \quad \alpha_2 = \frac{1}{\alpha_1}, \quad \alpha_3 = 1,$$

$$\alpha_1+\frac{1}{\alpha_1}=\frac{(q-1)(q-2)-(q+2)r}{q},$$
 where $r=\sqrt{(q-1)(17q-1)}>0.$

The case (ii) with q=4 was found by Chan.