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Hadamard matrices and generalizations

@ A (real) Hadamard matrix of order n is an n X n matrix
H with entries +1, satisfying HH" = nl.

3 Hadamard matrix of order n whenever n =0 (mod 4).

@ A complex Hadamard matrix of order n is ann x n
matrix H with entries in {¢ € C | |¢| = 1}, satisfying
HH* =nl, where x means the conjugate transpose.

We propose a strategy to construct infinite families of complex
Hadamard matrices using association schemes, and
demonstrate a successful case.



Circulant (complex) Hadamard matrices
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Circulant (complex) Hadamard matrices

n—1
H= =D wA, A=
. " " . 2:0
aq Qo 1

—_

Instead of n? entries, there are only n entries to determine.
Bjorck—Froberg (1991-1992) circulant Hadamard, n < 8
Faugere (2001), (2004) circulant Hadamard, n =9, 10

On the other hand, it is conjectured that no circulant real
Hadamard matrix of order > 4 exists.
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Goethals—Seidel (1970) symmetric regular (real) Hadamard
matrix necessarily comes from a strongly regular
graph (SRG) on 4s? vertices

de la Harpe—Jones (1990) SRG n: prime =1 (mod 4) —
symmetric circulant complex Hadamard

M.-Watatani (1992) DRT n: prime =3 (mod 4) —
non-symmetric circulant complex Hadamard

H = Oévo + OélAl + O./QAQ, AO =1
Al = A, Aj = Ay, (G-J., delaH-J)
Al = Ay, (M=W)

Unifying principle: association schemes.
(strongly regular graphs is a special case)



Godsil-Chan (2010), and Chan (2011) classified complex
Hadamard matrices of the form:

H = apl + a1 A1 + Ay (we may assume ag = 1)
where |ay| = |as| =1, and

A; = adjacency matrix of a SRG I,

A, = adjacency matrix of T
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Godsil-Chan (2010), and Chan (2011) classified complex
Hadamard matrices of the form:

H = apl + a1 A1 + Ay (we may assume ag = 1)
where |ay| = |as| =1, and

A; = adjacency matrix of a SRG I,

A, = adjacency matrix of T
also found a complex Hadamard matrix of the form
H =1+ a1 A1 + apAy + a3 As

of order 15 from the line graph L(O3) of the Petersen graph
Os.
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d
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(07 Qy
Qjj = — + —

0<i<j<d). 1
S 0si<j<d) (1)

d

Z ijPkiPkj = T — Zpiz (VE) (2)

0<i<j<d i=0
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Step 1 Solve the system of linear equations (2) in {a;; }
Step 2 Find {a;} from {a;;} by (1).
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a; Oéj . .
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i a + a; (0<i<j<d) (1)
d
Z AijPkiPkj = 1 — szz (Vk) (2)
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Step 1 Solve the system of linear equations (2) in {a;; }
Step 2 Find {a;} from {a;;} by (1).
Problem: Given {a;;}, when 3{«;} satisfying (1)?

f . (Sl)d—H N Rd(d—s—l)/z’

{aitly = {3_;+Z_Z}0§i<j<d-

where S' ={C e C|[¢] =1}
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%=t o (0<i<yj<d) (1)
d
Z @ij PkiPkj zn—Zpii (Vk) (2)
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Step 1 Solve the system of linear equations (2) in {a;; }
Step 2 Find {a;} from {a;;} by (1).
Problem: Given {a;;}, when 3{«;} satisfying (1)?

f . (Sl)d—H N Rd(d—s—l)/z’

{aitly = {3_;+Z_Z}0§i<j<d-

where S = {¢ € C| [¢| = 1}. Describe image of f
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{aitly = {&+ L Yocicj<d:
Describe the image of f. For example, for d = 2:
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Instead of considering f : (1) — RUI+1/2 consider
f . (Cx)d—i—l N Cd(d—i—l)/Q,
{aitly = {&+ L Yocicj<d:
Describe the image of f. For example, for d = 2:
f:(C*)? — C3
(z,y,2) — (G+E42+24+2)
Not surjective. g(X,Y,Z) = X?>+Y?*+ 72?2 - XY 7 — 4.

y
z

T z
+ 24242
i

x
_ , _|_):0
Yy T 2

ya
q( -
y

Indeed, image of f = zeros of g.
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fo(C) - C°

(w0, 1, X2, 3) — (%‘F%)ogiqg
g XY, Z2)=X?+Y?+2?-XYZ — 4.

ZT; T T Ty T T
gk =0(+ L L
T Tr; T

)=0

T, TE X



fi(@©) - C
(w0, 21,02, w3) (5% + T)o<icjzs

XY, Z) = X2+ Y2+ 22— XY 7 — 4
Z; T $] + Tk

T
Gigp = g(=+ 22, 2L 2 —)=0
T ox m o X T X

image of f = zeros of {gijk}-
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h = (X3 — 4) X152 — Xos(Xo1 Xos + X2 X13)
xT; xI;
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(and similar polynomials obtained by permuting indices)
image of f = zeros of g, h.



f(@) = C°

(w0, 1, X2, 3) — (%‘F%)ogiqg?,
g XY, Z2)=X?+Y?+2?-XYZ — 4.

ZT; T T Ty T T
gig=g(—+=2L, =+ =242
T Tr; T

) =0

x; T Ty
image of f # zeros of {g; x}. Need

h = (X3 — 4) X152 — Xos(Xo1 Xos + X2 X13)
xT; xI;
+2(Xo1 Xoz + X13Xa3)  (Xjj = — + =

i T

)

(and similar polynomials obtained by permuting indices)
image of f = zeros of g, h.
The same is true for Vm > 4.



Theorem
f . (CX)dH s (cd(d+1)/2’
(ag,1,...,0q4) — (STJ + %)0§i<j§d
The image of f coincides with the set of zeros of the ideal [ in
the polynomial ring C[X;; : 0 < ¢ < j < d] generated by
9(Xij, X, Xjn)
h( X5, Xk, X, Xk, Xji, Xiar)

where 7, j, k, [ are distinct, X;; = X,;, and

g=X>+Y2 4+ 22 - XYZ — 4,
h= (2 -4)U - Z(XW +YV) +2(XY + VWV).




Given a zero (a;;) of the ideal I, we know that there exists
() € (C*)?*! such that

a; a;
Q5 = — + —=

<i<i<d). 1
ot (0<i<j<d) (1)
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How do we find (c;), and when does (a;) € (S1)4*! hold?



Given a zero (a;;) of the ideal I, we know that there exists
() € (C*)?*! such that

a; a;
_+_

(&% a;

How do we find (c;), and when does (a;) € (S1)4*! hold?
Observe, for a € C*,

1
la| =1 <= —2<a+—<2.
a



Given a zero (a;;) of the ideal I, we know that there exists
() € (C*)?*! such that

a5 Qi

()(,j a;

How do we find (c;), and when does (a;) € (S1)4*! hold?
Observe, for a € C*,

1
la| =1 <= —2<a+—<2.
«



Given a zero (a;;) of the ideal I, we know that there exists
() € (C*)?*! such that

Y Y 0<i<j<a). (1)

aij =
(&% a;

How do we find (c;), and when does (a;) € (S1)4*! hold?
Observe, for a € C*,

1
la| =1 <= —2<a+—<2.
a

So we need —2 < q;; < 2.



Given a zero (a;;) of the ideal I, we know that there exists
() € (C*)?*! such that

a5 Qi

(0<i<j<d). (1)

a” N ()(,j a;
How do we find (c;), and when does (a;) € (S1)4*! hold?
Observe, for a € C*,

1
la| =1 <= —2<a+—<2.
Q@
So we need —2 < q;; < 2.
Moreover, if a;; € {£2} for all 4, j, then o; = +a; so the
resulting matrix is a scalar multiple of a real Hadamard matrix
— Goethals—Seidel (1970).



Theorem

f . ((Cx)d—f—l — Cd(d—f—l)/Q,
(o0, a1, ., 00) = (2 + To<icj<d
Suppose (a;;) € the image of f, a;; € R, and there exists
0<ip<in < d such that —2 < Qg iy < 2. Let Qg5 Ay be

Oéio ozil
J— + -

Qigiy =

075 (07h
Define a; (O S 1 S n, 1 7& io,il) by

. (07 (aio,h Oy — Qaio)

o = o
@iy ,iQy — Qig i Qi
Then |o;| = || and
a; Q; . .
B i 0<i<j<d 1
o to=a 0si<j<d 1)

and every (o) satisfying (1) is obtained in this way.
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f . ((Cx)d—f—l — Cd(d—f—l)/Q,

(o0, a1, ., 00) = (2 + To<icj<d

Suppose (a;;) € the image of f, a;; € R, and there exists
0 <19 < iy <dsuchthat —2 < Qg iy < 2. Let Qg5 Ay be

—1
(070 (079 (077 (077
Gigay = —> 4 L =2 4 (2
075 (07h (075 (079

Define a; (O S 1 S n, 1 7& io,il) by

. (07 (aio,h Oy — Qaio)

o = o
@iy ,iQy — Qig i Qi
Then |o;| = || and
a; Q; . .
B i 0<i<j<d 1
o to=a 0si<j<d ¢

and every (o) satisfying (1) is obtained in this way.



The procedure

Step 1 Solve the system of equations
9(Xij, X, Xji) = 0,
h(lea Xik:7 Xila X X'lv Xkl) = 07
Z Xz]pkzpkj =n— Z[)kz
0<i<j<d

Step 2 List all solutions a;; with =2 < a;; < 2.
Step 3 Find () by

e7h (Gio,z'l Qi — 20%)

Q; =
Qiy iy — Gig,iig

where a;, ;, # £2,
Qi | QG

_|_
Qg Oy

= Qig,iy -



Step 1 Solve the system of equations
Step 2 List all solutions a;; with —2 < a;; < 2,
Step 3 Find (o)



Step 1 Solve the system of equations
Step 2 List all solutions a;; with —2 < a;; < 2,
Step 3 Find (o)

In many known examples of association schemes with d = 3,
Step 2 failed.



Step 1 Solve the system of equations

Step 2 List all solutions a;; with —2 < a;; < 2,

Step 3 Find (o)
In many known examples of association schemes with d = 3,
Step 2 failed.

Theorem (Chan, arXiv:1102.5601v1)

There are only finitely many antipodal distance-regular graphs
of diameter 3 whose Bose—Mesner algebra contains a complex
Hadamard matrix.




Step 1 Solve the system of equations
Step 2 List all solutions a;; with —2 < a;; < 2,
Step 3 Find (o)

In many known examples of association schemes with d = 3,
Step 2 failed.

Theorem (Chan, arXiv:1102.5601v1)

There are only finitely many antipodal distance-regular graphs
of diameter 3 whose Bose—Mesner algebra contains a complex
Hadamard matrix.

But Chan did find an example. L(Os): the line graph of the
Petersen graph.



@ ¢: a power of 2, ¢ > 4,

o (1 =PG(2,q): the projective plane over F,

o Q = {[ag,a1,as] € Q| ak + ajay = 0}: quadric,
o X = {[ap,a1,as] € Q\ Q | [ao, a1, as] # [1,0,0]},
°o | X|=¢*—-1.



@ ¢: a power of 2, ¢ > 4,
o (1 =PG(2,q): the projective plane over F,
o Q = {[ag,a1,as] € Q| ak + ajay = 0}: quadric,
o X = {[ag,a1,as] € 2\ Q| [ao, a1, as] # [1,0,0[},
o [X|=¢*—-1.

For x,y € X, denote by x + y the line through z,y.

( ifi=0 o=y,

ifi=1[z+y) NQ|=2,
ifi=2|(z+y)NQ|=0,
ifi=3l(z+y)NQ|=1,
otherwise.
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o
~
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3
<
I
O = = =
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J a complex Hadamard matrix in its Bose-Mesner algebra.
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( ifi=0 o=y,

ifi=1[z+y) NQ|=2,
ifi=2|(z+y)NQ|=0,
ifi=3l(z+y)NQ|=1,
otherwise.

—~
o
~
~—
3
<
I
O = = =

\

J a complex Hadamard matrix in its Bose-Mesner algebra.



@ ¢: a power of 2, g >4— q =4,
o (1 =PG(2,q): the projective plane over F,
o Q = {[ag,a1,as] € Q| ak + ajay = 0}: quadric,
o X = {[ap,a1,as] € Q\ Q| [ao, a1,as] # [1,0,0]},
o |X|=¢—1— 15.

For z,y € X, denote by x + y the line through x, y.

(

1 ifi=0,z=y,

1 ifi=1|(z+y) NQ|=2,
(A)ey =<1 ifi=2|(z+y)NQ| =0,

1 ifi=3 [(z+y)NQ|=1,

|0 otherwise.

3 a complex Hadamard matrix in L(Os).



Theorem

The matrix H = I + CYlAl T OZQAQ T 043143 is a Complex
Hadamard matrix if and only if

(i) H belongs to the subalgebra forming the Bose—Mesner
algebra of a strongly regular graph (precise description
omitted, already done by Chan—-Godsil),

where 7 = /(¢ — 1)(17¢ — 1) > 0.

The case (ii) with ¢ = 4 was found by Chan.



