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t-(v, k, \) designs Intersection numbers

(P8 k) design. Wre =

A t-(v, k,\) design is a pair (P, B), where M1=|{BeB| T cCB},
@ P: a finite set of “points”, where T/ C P, |T'| = t — 1. Then
@ B: a collection of k-subsets of P, a member of which is called a
“block,” Ak —t+1)= Z B\ T|
@ VT C P with |T| = t, there are exactly A members B € B such Ees
that T 8. 1 —{(B.x)€B|T'U{x} CB. xe P\ T'}|
Examples: /
= BeB| T'U{x} CB
@ 2-(v,3,1) design = Steiner triple system XGPZ\T, 3 | by J
@ 2-(g% q,1) design = affine plane of order q B Z \
- t
t-design = (t — 1)-desi P
-design — 1)-design
'8 '8 :At(v— t+1)

More precisely,. ..
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(P, B): t-(v, k,\) design

Then (P, B): (t —1)-(v, k, At—1) design, where

For example,

5-(24,8,1) = 4-(24,8,5)
— 3-(24,8,21)
— 2-(24,8,77)
— 1-(24,8,253)
— 0-(24,8,759)
<~ |B| = 759.
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(P, B): t-(v, k,\) design

Let ICP, JCP |l|=i [J=jInd=0,i+j<t
Define _
N={BeB|lCB, BnJ=0}|.

In particular,
M=) (0<i<t).
- - .
N =N N

/ \ N
AL A
OIS

A3 A7 AT A
A0 AL AZ A3 A
A2 AL AZ A3 A4 NS
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5-(24,8,1) design, X" = M.+ N

759
263 506
7r 176 330
21 56 120 210
5 16 40 80 130
1 4 12 28 52 78

+
Next row?

PYEDYED VN
N()=|{BeB|IcB}=1o0r0

depending on the choice of | C P with |/| = 6.
Choose / in such a way that \J(/) = 1.
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/\

5-(24,8,1) design, | C P, |l| =6,/ CcIBe€ B

Aé—j:|{B€B’I\JCBy BNJ=0} whereJC I, J=].

] ] j+1

X j=Xe X5
giving
759
253 506
77 176 330
21 56 120 210
5 16 40 80 130

1 4 12 28 52 78
1 0 4 8 20 32 46

Similarly, taking | C P, |I| = 7 appropriately, we obtain )\J%_j.
Finally taking / € B, we obtain X]_,.
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5-(24,8,1) design

759
253 506
77 176 330
21 56 120 210
5 16 40 80 130

1 0 0 4 4 16 16 30

The last row implies

B,B'eP, B#B" — |BNB'|€{4,2,0}.
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A (linear) binary code of length v is a subspace of the vector space
Y. If C is a binary code and dim C = k, we say C is an binary [v, k]
code.

The dual code of a binary code C is defined as

Ct={xeFy|x-y=0(Vy e C)}.
where ,
X'y:ZXi}/i~
i=1

Then
dimCt=v—dimC.

The code C is said to be self-orthogonal if C C C* and self-dual if
C=cC
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Todd's lemma

Let (P, B) be a 5-(24,8, 1) design. Then
B,B'eB, |BNB|=4 = BAB €B.
Proof by contradiction:

12345678

1234 9 10 11 12
5678910 13 14
5678 11 12 15 16

* x x x 567 9 11

Here “x**x" must be odd and even simultaneously.
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For x € F¥, we write

supp(x) = {i |1 <i<v, x; # 0},
w(x) = | supp(x)!.

For a binary code C, its minimum weight is
min{wt(x) | 0 # x € C}.

If an [v, k] code C has minimum weight d, we call C an [v, k, d|
code. C is doubly even if wt(x) =0 (mod 4) (Vx € C). Note

C C C' <= |supp(x)Nsupp(y)| =0 (mod 2) (Vx,y € C).
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Generator matrix of a code Incidence matrix of a design

If a binary code C is generated by row vectors x() ... x(®) then the
matrix . If D= (P,B)is a t-(v, k, \) design, the incidence matrix M(D) of D
x) is |B| x |P| matrix whose rows and columns are indexed by B and P,
: respectively, such that its (B, p) entry is 1 if p € B, 0 otherwise. In
x(b) other words, the row vectors of M(D) are the characteristic vectors
f blocks:
is called a generator matrix of C. This means o blocks «(B1)
b _ M(D)= | : : b X v matrix,
C:{ZE;X(’) | 61,...,6b€]F2} CF‘Z/ x(Bb)
i=1
N where B = {By, ..., By}, and x(B) € FY denotes the characteristic
ote

vector of B, i.e., supp(x(#)) = B.

1 (i) 0] — 492 o The binary code of the design D is the binary code of length v
CC ¢ = Jsupp(x) Nsupp(x7)[ =0 (mod 2) (Vi) having M(D) as a generator matrix.

C : doubly even <= C C C* and wt(x)) =0 (mod 4) (Vi).
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dim C < 12 for 5-(24, 8, 1) design The 5-(24,8, 1) design, |BN B'| € {4,2,0}
Recall that in a 5-(24, 8, 1) design (P, B), P ={1,2,...,24}. We may take B as:
, / 123456738
IBNB'| € {8,4,2,0} (VB,B € B). P2 o 10 11 1
The binary code C of a 5-(24,8,1) design is self-orthogonal. Indeed, 1 i 8 4 g 2 181415 16 17 18
the incidence matrix has row vectors x(8) (B € B), the characteristic 1 3458 9 19 20 21
vector of the block B. Then 2345 9 22 23 24
123 6 9 16 19 22
x(B) . x(B) = |B N B’ mod 2 = (8 or 4 or 2 or 0) mod 2 = 0. 12 4 6 9 13 20 23
1 34 6 9 14 17 24
L 12 56 9 10 21 24
Thus C C C—, hence L3 se 5 i 18 03
: 1, . .y 24 :
dimC < E(dlm C+dimCH) < 5 = 12. Do we have to find 759 blocks one by one?

No, 12 blocks are sufficient (so one more needed).
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Consequence of Todd's lemma One more block for 5-(24,8,1) design

12345678
12345678 1234 9 10 11 12
1234 9 10 11 12 123 5 9 13 14 15
123 5 9 13 14 15 12 45 9 16 17 18
12 45 9 16 17 18 1 345 9 19 20 21
1 345 9 19 20 21 2345 9 22 23 24
2345 9 22 23 24 123 6 9 16 19 22
123 6 9 16 19 22 12 4 6 9 13 20 23
12 4 6 9 13 20 23 1 34 6 9 14 17 24
1 34 6 9 14 17 24 12 56 9 10 21 24
12 56 9 10 21 24 1 3 56 9 11 18 23
1 3 56 9 11 18 23

The above 11 blocks generate a 11-dimensional code Cy. Note the
By Todd’s lemma transposition (7 8) leaves Gy invariant. We know from Todd's lemma
By = {7,8,17,18,20,21,23,24} € B (but x(B) € ().
Consider the block containing {1,2,3,8,9}. There are two choices:
B=1{1,2,3,8,9,17,21,23} and B’ = {1,2,3,8,9,18, 20, 24}.
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Bo = ((81AB4)AB7)A(B5AB€,) = {7, 87 17, 18, 20, 21, 23, 24} S B
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One more block for 5-(24,8,1) design Mendelsohn equations for t-(v, k, A) design (P, B)

We know
Bo = {7,8,17,18,20,21,23,24} € B, x\8) e ¢y = ('Y, For S C P. let
We have either ni(S)={BeB|i=|BnS|}.
B 12300102020 <5 ,- N
Z (j)n,-(S) = )\j< i ) (0<j<e).

But B'"® = BABy, so i>0 J

(Co, xBNT8) — (), xB) 1 x(Bo)y = (o, x(B)). Proof: Count {(J,B)| JC SNB, |J| = j}
Therefore, the code generated by the design is unique up to in two ways.

isomorphism. This self-dual (C = C1) code is known as the extended
binary Golay code. Next we show that the code determines the
design uniquely.
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n(S)=|{B €B|i=|BNS]}

Let C be the binary code of the design (P, B).
Write n;(supp(v)) = n;(v) for v € Fy.

2 C) mi(v) =4 (Wtj(-v)) (0<j<).

If v € C*, then |B Nsupp(v)] is even, so

ni(v)=|{BeB|i=|Bnsupp(v)[}|=0 foriodd.

Thus

= (po-a (%) e

0<i<wt(
i: even
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(P, B): 5-(24,8,1) design

> C) ni(v) =X (Wt(v)) (0<j<5).

0<i<wt(v) J
i: even

Taking v € C* with 0 < wt(v) < 8 gives no solution. This means
that C* has minimum weight 8.

Take v € C = C*+ with wt(v) = 8. Then there are six equations for
five unknowns ng, ny, ng, ng, ng. The unique solution is

(no, na, ng, ne, ng) = (30,448,280,0,1).
This implies supp(v) € B. Thus
B = {supp(x) | x € C, wt(x) = 8}.

Now the uniqueness of the design follows from that of C.
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The Assmus—Mattson theorem

D: 5-(24,8,1) design (Witt system).

@ The binary code C of D is a doubly even self-dual [24,12, 8]

code.
@ The binary code C of D is unique up to isomorphism.
o {supp(x) | x € C, wt(x) =8} = B.
@ There is a unique 5-(24, 8, 1) design up to isomorphism.

The Assmus—Mattson theorem implies that every binary doubly even

self-dual [24, 12, 8] code coincides with the binary code of a

5-(24,8, 1) design, and hence such a code (the extended binary Golay

code) is also unique.
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Let C be a binary code of length v, minimum weight k.
P=A{12,...,v},
B = {supp(x) | x € C, wt(x) = k},
S={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.

@ C: [24,12, 8] binary doubly even self-dual (C = C*) code, so
k = 8 and C has only weights 0, 8,12, 16, 24.
S ={wt(x) | x € C*, 0 < wt(x) <24} = {8,12,16},
t=k—|S|=8-3=5.
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Uniqueness of the extended binary Golay code Applicability of the Assmus—Mattson theorem

C: [24,12, 8] binary doubly even self-dual (C = C*) code. Let C be a binary code of length v, minimum weight k.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24}, P={12,...,v},

B = {supp(x) | x € C, wt(x) = k},

B = {supp(x) [ x € C, wt(x) = 8}, S = {wt(x) | x € C*, 0 < wt(x) < v},

for some A. t=k—|S|
@ If A\ >1,then 3B,B' € B, B# B, BN B'| > 5. Then : .
wt(x(B) + x(B)) < 8, a contradiction. Thus A\ = 1. Wiz (7 9] 8 & - b ) el flar eouie J
@ So C is the binary code of a 5-(24,8, 1) design which was The conclusion is stronger if k is large and |S| is small. These are
already shown to be ungiue. conflicting requirments:
This proves the uniqueness of the extended binary Golay code. larger k => smaller C = larger Ct = larger S

suppose C = C*, doubly even = S not too large
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Binary doubly even self-dual codes Extremal binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly Theorem (I\/Iallows—SIoane 1973)

even self-dual code? Let k be the minimum weight. :
For m > 1, a binary doubly even self-dual [24m, 12m] code has
S={wt(x)| x € C, 0 <wt(x) < v}, minimum weight at most 4m + 4. |
PR
o k=8 1S|=3 5=181216), v =24 A binary doubly even self-dual [24m, 12m] code with minimum weight
' ' RS ' 4m+ 4 is call .
o k=12, |S| =7, S = {12,16,20,24,28,32,36}, v = 48. m+ 4 s called extrema )
o k=16, |S| =11, S = {16, 20,24, 28,32, 36, 40, 44, 48,52, 56}, For m > 1, an extremal binary doubly even self-dual code gives a
v =T2. 5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.
In general, Vk: a multiple of 4, |S| = k —5, ° én = 1: the extended binary Golay code and the 5-(24,8,1)
esign
S={k k+4k+8,. .. 5k—24=v—k} @ m = 2: Houghten—Lam—Thiel-Parker (2003): unique [48,24,12]
code and a 5-(48,12,8) design which is unique under
v =6k — 24 = 24m, where k = 4m + 4. self-orthogonality.
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Extremal binary doubly even self-dual codes

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

@ For m > 3, neither a code nor a design is known.

Theorem (Zhang, 1999)

There does not exist an extremal [24m, 12m, 4m + 4] binary doubly
even self-dual code for m > 154.
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