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© t-designs

© intersection numbers

© 5-(24,8,1) design

© binary codes

© [24,12, 8] binary self-dual code
© Assmus—Mattson theorem

@ extremal binary doubly even codes
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t-(v, k, \) designs

A t-(v, k, \) design is a pair (P, B), where
@ P: a finite set of v “points”,

@ BB: a collection of k-subsets of P, a member of which is called a
“block,”

@ VT C P with |T| = t, there are exactly A members B € B such
that T C B.
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t-(v, k, \) designs

A t-(v, k, \) design is a pair (P, B), where
@ P: a finite set of v “points”,

@ BB: a collection of k-subsets of P, a member of which is called a
“block,”

@ VT C P with |T| = t, there are exactly A members B € B such
that T C B.

Examples:

@ 2-(v,3,1) design = Steiner triple system
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t-(v, k, \) designs

A t-(v, k, \) design is a pair (P, B), where
@ P: a finite set of v “points”,

@ BB: a collection of k-subsets of P, a member of which is called a
“block,”

@ VT C P with |T| = t, there are exactly A\ members B € B such
that T C B.

Examples:

@ 2-(v,3,1) design = Steiner triple system
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t-(v, k, \) designs

A t-(v, k, \) design is a pair (P, B), where
@ P: a finite set of v “points”,

@ BB: a collection of k-subsets of P, a member of which is called a
“block,”

@ VT C P with |T| = t, there are exactly A members B € B such
that T C B.

Examples:
@ 2-(v,3,1) design = Steiner triple system
@ 2-(¢%, g, 1) design = affine plane of order g
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t-(v, k, \) designs

A t-(v, k, \) design is a pair (P, B), where
@ P: a finite set of v “points”,

@ BB: a collection of k-subsets of P, a member of which is called a
“block,”

@ VT C P with |T| = t, there are exactly A members B € B such
that T C B.

Examples:
@ 2-(v,3,1) design = Steiner triple system
@ 2-(¢% g, 1) design = affine plane of order g
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t-(v, k, \) designs

A t-(v, k, \) design is a pair (P, B), where
@ P: a finite set of v “points”,

@ BB: a collection of k-subsets of P, a member of which is called a
“block,”

@ VT C P with |T| = t, there are exactly A\ members B € B such
that T C B.

Examples:
@ 2-(v,3,1) design = Steiner triple system
@ 2-(¢% g, 1) design = affine plane of order g
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t-(v, k, \) designs

A t-(v, k, \) design is a pair (P, B), where
@ P: a finite set of v “points”,

@ BB: a collection of k-subsets of P, a member of which is called a
“block,”

@ VT C P with |T| = t, there are exactly A members B € B such
that T C B.

Examples:
@ 2-(v,3,1) design = Steiner triple system
@ 2-(¢% g, 1) design = affine plane of order g
t-design = (t — 1)-design

More precisely,. ..
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Intersection numbers

(P,B): t-(v, k,\) design. Write A = \,,
Ae1=[{BeB|T C B}
where T" C P, |T'| =t —1. Then
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Intersection numbers

(P,B): t-(v, k,\) design. Write A = )\,
M-1={BeB| T CB},
where T" C P, |T'| =t — 1. Then
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Intersection numbers

(P,B): t-(v, k,\) design. Write A = A,
Ae1=[{BeB|T C B}
where T" C P, |T'| =t —1. Then
Meoi(k—t+1)= > [B\T
BeB
T'CcB

H(B,x)|BeB, TU{x}C B, xeP\ T}
= Y |{BeB|TU{x}cCB}

x€P\T'
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Intersection numbers

(P,B): t-(v, k,\) design. Write A = A,
Ae1=[{BeB|T C B}
where T" C P, |T'| =t —1. Then
Aok —t+1)= > [B\ T
BeB
T'cB

H(B,x)|BeB, TU{x}C B, xeP\ T}
= Y |{BeB|TU{x}cCB}

x€P\T'
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where
\ v—t+1
t—1 —

"k—t+1
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where
\ v—t+1 24-5+1 20
t-1 = =1 =

—Z_—5
For example,

‘k—t+1 =~ 8—-5+1 4

5-(24,8,1) = 4-(24,8,5)
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where
\ v t+1 24— 4+1
t-1 = = =

‘k—t+1 ~ 8—4+1
For example,

5-(24,8,1) => 4-(24,8,5)
— 3-(24,8,21)
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where
\ v t+1 24— 4+1
t-1 = = =

‘k—t+1 ~ 8—4+1
For example,

5-(24,8,1) = 4-(24,8,5)
— 3-(24,8,21)

RERSA (BRIEKE) Codes and Designs



(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where
\ v—t+1 24 -4 +1 21
t-1 = = =

5.—=21
For example,

k—t+1 =~ 8—44+1 5

5-(24,8,1) => 4-(24,8,5)
— 3-(24,8,21)
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where
\ v—t+1
t—1 —

‘k—t+1
For example,

5-(24,8,1) = 4-(24,8,5)
— 3-(24,8,21)
— 2-(24,8,77)
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where

Apoq = tv_it*l
k—t+1
For example,
5-(24,8,1) = 4-(24,8,5)
— 3-(24,8,21)
— 2-(24,8,77)
— 1-(24,8,253)
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where

Apoq = tv_it*l
k—t+1
For example,

5-(24,8, 1) 4-(24,8,5)
3-(24,8,21)
2-(24,8,77)
1-(24,8,253)
0-(24,8,759)
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(P, B): t-(v, k, \) design

Then (P, B): (t —1)-(v, k, A\;_1) design, where

VS WAl
k—t+1
For example,
5-(24,8,1) = 4-(24,8,5)
— 3-(24,8,21)
— 2-(24,8,77)
— 1-(24,8,253)
— 0-(24,8,759)
< |B| =759.
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(P, B): t-(v, k, \) design
Let [ CP, JCP, || =i [J=j, INnd=0,i+j<t
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(P, B): t-(v, k, \) design

let ICP, JCP, |l|=i [J=jInd=0i+j<t.
Define _
N=[{BeB|lcB, BnJ=10}.
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(P, B): t-(v, k, \) design

let ICP, JCP, |l|=i |J=jInd=0i+j<t.
Define .
N=({BeB|lcB, BnJ=10}.
In particular,
N=)N=|{BeB|ICB}.
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(P, B): t-(v, k, \) design

let ICP, JCP, |l|=i [J=jInd=0i+j<t.
Define _
M=KBeB|lIcB, BNnJ=0}|
In particular,
N=)N=|{BeB|ICB}.

W= NN
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(P, B): t-(v, k, \) design

let ICP, JCP, |l|=i [J=jInd=0i+j<t.
Define _
N=[{BeB|lcB, BnJ=10}.

In particular,
N=)N=|{BeB|ICB}.
N =N N

/ \ )\8
A0 AL
NGO R

M AN
ARERRT
A2 AL A2 A3 N8 NS
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(P, B): t-(v, k, \) design

let ICP, JCP, |l|=i [J=jInd=0i+j<t.
Define _
N=[{BeB|lcB, BnJ=10}.

In particular,
N=)N=|{BeB|ICB}.
N7 =N N

/ \ )\8
A0 AL
NGO R

A3 A3 AT A
i A3 5 0 X
A2 AL AZ A3 M3
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5-(24,8,1) design, N~

759

RERSA (BRIEKE) Codes and Designs



5-(24,8,1) design, N~

759
253 506
77 176
21 56 / \
5 16
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5-(24,8,1) design, N~

759
253 506
77 176 330
21 56 120 / \
5 16 40
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5-(24,8,1) design, X ' = M7 + X

759
253 506
77 176 330
21 56 120 210 / \
5 16 40 80
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5-(24,8,1) design, X ' = M7 + X

759
253 506
77 176 330
21 56 120 210 / \
5 16 40 80 130
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5-(24,8,1) design, X ' = M7 + X

759
253 506
77 176 330
21 56 120 210 / \
5 16 40 80 130
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5-(24,8,1) design, N~

759
253 506
77 176 330
21 56 120 210 / \
5 16 40 80 130
1 4 12 28 52 78 +

Next row? A\, A}, A7, ...
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5-(24,8,1) design, X ' = M7 + X

759
253 506
77 176 330
21 56 120 210 / \
5 16 40 80 130
1 4 12 28 52 78 +

Next row? A\, A}, A7, ...
N()=|{BeB|ICcB}=1or0

depending on the choice of / C P with |/| = 6.
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5-(24,8,1) design, X ' = M7 + X

759
253 506
77 176 330
21 56 120 210
5 16 40 80 130

1 4 12 28 52 78 +

Next row? A\, A}, A7, ...
N()=|{BeB|ICcB}=1or0

depending on the choice of / C P with |/| = 6.
Choose | in such a way that AJ(/) = 1.
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5-(24,8,1) design, | C P, |l|=6,1 C dB € B

X ={BeB|I\N\JCB, BNJ=0} whereJC I J=]j
j j j+1
giving
759
253 506
77 176 330
21 56 120 210
5 16 40 80 130

1 4 12 28 52 78
1 0 4 8 20 32 46

Similarly, taking | C P, |I| = 7 appropriately, we obtain )\J%_J-.
Finally taking I € 3, we obtain )\é_j.

RERSA (BRIEKE) Codes and Designs



5-(24,8,1) design

759
253 506
7r 176 330
21 56 120 210
5 16 40 80 130

1 0 0 4 4 16 16 30

The last row implies

B,B'e P, B#B" — |BNB'| € {4,2,0}.
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A (linear) binary code of length v is a subspace of the vector space

F¥. If C is a binary code and dim C = k, we say C is an binary [v, k]
code.
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A (linear) binary code of length v is a subspace of the vector space
F¥. If C is a binary code and dim C = k, we say C is an binary [v, k]
code. The dual code of a binary code C is defined as

Ct={xeFy|x-y=0(¥yec )}

where

Xy = in)/i-
i=1
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A (linear) binary code of length v is a subspace of the vector space
F¥. If C is a binary code and dim C = k, we say C is an binary [v, k]
code. The dual code of a binary code C is defined as

Ct={xeFy|x-y=0(¥yec )}
where .
Xy = in)/i-
i=1

Then
dimC*t =v—dimC.

The code C is said to be self-orthogonal if C € C* and self-dual if
C=Ch
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For x € ¥, we write

supp(x) ={i |1 <i<v, x; # 0},
wi(x) = | supp(x)!.

For a binary code C, its minimum weight is

min{wt(x) | 0 # x € C}.
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For x € ¥, we write

supp(x) ={i |1 <i<v, x; # 0},
wi(x) = | supp(x)!.

For a binary code C, its minimum weight is
min{wt(x) | 0 # x € C}.

If an [v, k] code C has minimum weight d, we call C an [v, k, d]
code.
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For x € ¥, we write
supp(x) ={i |1 <i<v, x; # 0},
wt(x) = | supp(x)|.
For a binary code C, its minimum weight is
min{wt(x) | 0 # x € C}.

If an [v, k] code C has minimum weight d, we call C an [v, k, d]
code.
If wt(x) =0 (mod 4) for all x € C, we call C doubly even.
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Generator matrix of a code

If a binary code C is generated by row vectors x(1), ... x(®) then the
matrix

(D

5(b)

is called a generator matrix of C. This means

b
C={> exD|er,... ey eFr} CFY.
i=1

RERSA (BRIEKE) Codes and Designs



Generator matrix of a code

If a binary code C is generated by row vectors x(1), ... x(®) then the
matrix

(D

5(b)

is called a generator matrix of C. This means
b
C={> exD|er,... ey eFr} CFY.
i=1

Note
Cc Ct <= [supp(x) Nsupp(x)| =0 (mod 2) (Vi,})).

(
C : doubly even <= C c C* and wt(x)) =0 (mod 4) (Vi).
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Incidence matrix of a design

If D= (P,B)isa t-(v, k, \) design, the incidence matrix M(D) of D
is the |B| x |P| matrix whose rows and columns are indexed by B and
P, respectively, such that its (B, p) entry is 1 if p € B, 0 otherwise.
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Incidence matrix of a design

If D= (P,B)is a t-(v, k, \) design, the incidence matrix M(D) of D
is the |B| x |P| matrix whose rows and columns are indexed by B and
P, respectively, such that its (B, p) entry is 1 if p € B, 0 otherwise.
In other words, the row vectors of M(D) are the characteristic
vectors of blocks:

X(Bl)
M(D)=| : : b X v matrix,
X(Bb)
where B = {By,..., By}, and x(B) € F} denotes the characteristic

vector of B.
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Incidence matrix of a design

If D= (P,B)is a t-(v, k, \) design, the incidence matrix M(D) of D
is the |B| x |P| matrix whose rows and columns are indexed by B and
P, respectively, such that its (B, p) entry is 1 if p € B, 0 otherwise.
In other words, the row vectors of M(D) are the characteristic
vectors of blocks:

X(Bl)
M(D)=| : . b X v matrix,
X(Bb)
where B = {By,..., By}, and x(B) € Fy denotes the characteristic

vector of B.
The binary code of the design D is the binary code of length v
having M(D) as a generator matrix.
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dim C < 12 for 5-(24, 8, 1) design

Recall that in a 5-(24,8,1) design (P, B),

IBNB'| €{8,4,2,0} (VB,B € B).
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dim C < 12 for 5-(24, 8, 1) design

Recall that in a 5-(24,8,1) design (P, B),
IBNB|e{8.4.2.0} (V8,8 ¢B).

The binary code C of a 5-(24,8, 1) design is self-orthogonal. Indeed,
the incidence matrix has row vectors x(8) (B € B), the characteristic
vector of the block B. Then

xB) . x(B) =B B'| mod 2 = (8 or 4 or 2 or 0) mod 2 = 0.
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dim C < 12 for 5-(24, 8, 1) design

Recall that in a 5-(24,8,1) design (P, B),
BN B| e {8,4,2,0} (VB,B € B).

The binary code C of a 5-(24,8,1) design is self-orthogonal. Indeed,
the incidence matrix has row vectors x(8) (B € B), the characteristic
vector of the block B. Then

xB) . x(B) = 1B B'| mod 2 = (8 or 4 or 2 or 0) mod 2 = 0.

Thus C € Ct, hence

24

dim C < %(dim C +dimCH) < - =12
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

P =1{1,2,...,24}. We may take B as:
B 123456738
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P ={1,2,...,24}. We may take B as:

678
6 789101112
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

P =1{1,2,...,24}. We may take B as:

B 123456738
B, 1234 9 10 11 12
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

P =1{1,2,...,24}. We may take B as:

B 123456738
B, 1234 9 10 11 12
B 123 5 9
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

P =1{1,2,...,24}. We may take B as:
B 123456738
B, 1234 9
Bs 1234567891011 12

10 11 12
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

P =1{1,2,...,24}. We may take B as:
B 123456738

B, 1234
Bs 12314

10 11 12

9
56789101112 13 14 15
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

P =1{1,2,...,24}. We may take B as:

B 123456738
B, 1234 9 10 11 12
B; 123 5 9 13 14 15
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
= {1

e
NN NN
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...,24}. We may take B as:

56738
9 10 11 12
9 13 14 15
9
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
= {1

[ G W Y

NN NN
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...,24}. We may take B as:

56738
9 10 11 12
9 13 14 15
9
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

={1,2,...,24}. We may take B as:
2345678

234 9 10 11 12

23 5 9 13 14 15
2345678910111213 1415
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

={1,2,...,24}. We may take B as:
2345678

234 9 10 11 12

23 5 9 13 14 15
234567891011 1213 14 15 16 17 18
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
= {1

[ )
N DN NN

RIAREA (SRALAS)

...,24}. We may take B as:

56738
9 10 11 12
9 13 14 15
9

Codes and Designs

16 17 18



I T e Sy
NN DN DN
www =
I ~ N
o1 oo

3
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The 5—(24, 8,1) design, |[BN B’| € {4,2,0}
.,24}. We may take B as:

10 11 12
13 14 15

9
9
9 16 17 18
9
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The 5—(24, 8,1) design, |[BN B’| € {4,2,0}
.,24}. We may take B as:

I T e Sy
NN DN DN
www =
I ~ N
o1 oo

3
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10 11 12
13 14 15
16 17 18

9
9
9
9 19 20 21
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

2
1234
B, 1234 9 10 11 12
B; 123 5 9 13 14 15
By, 12 45 9 16 17 18
Bs 1 345 9 19 20 21
Bs 2345 9
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

2
1234
B, 1234 9 10 11 12
B; 123 5 9 13 14 15
By, 12 45 9 16 17 18
Bs 1 345 9 19 20 21
Bs 2345 9 22 23 24
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

2
1234
B, 1234 9 10 11 12
B; 123 5 9 13 14 15
By, 12 45 9 16 17 18
Bs 1 345 9 19 20 21
Bs 2345 9 22 23 24
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}

13 14 15
16 17 18
19 20 21
22 23 24

RERSA (BRIEKE) Codes and Designs



The 5—(24, 8,1) design, |[BN B’| € {4,2,0}

1,2,.
345678
34

3

c1 o1 o1 o1 Ol

4
4
4
4

.,24}. We may take B as:

13 14 15
16 17 18
19 20 21
22 23 24
10 11 12 13 14 15

RIAREA (SRALAS)

Codes and Designs



The 5—(24, 8,1) design, |[BN B’| € {4,2,0}

1,2,.
345678
34

3

C1 o1 o1 o1 Ol

4
4
4
4

.,24}. We may take B as:

13 14 15
16 17 18
19 20 21
22 23 24
10 11 12 13 14 15
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The 5—(24, 8,1) design, |[BN B’| € {4,2,0}

1,2,.
345678
34

3

c1 o1 o1 o1 Ol

4
4
4
4

.,24}. We may take B as:

13 14 15
16 17 18
19 20 21
22 23 24
10 11 12 13 14 15 16 17 18
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The 5—(24, 8,1) design, |[BN B’| € {4,2,0}

1,2,.
345678
34

3

c1 o1 o1 o1 ol

4
4
4
4

.,24}. We may take B as:

13 14 15
16 17 18
19 20 21
22 23 24
10 11 12 13 14 15 16 17 18 19 20 21
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The 5—(24, 8,1) design, |[BN B’| € {4,2,0}

1,2,.
345678
34

3

c1 o1 o1 o1 Ol

4
4
4
4

.,24}. We may take B as:

13 14 15
16 17 18
19 20 21
22 23 24
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

RIAREA (SRALAS)

Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}

123
123 9
B; 123 5 9 13 14 15
By, 12 45 9 16 17 18
Bs 1 345 9 19 20 21
Bs 2345 9 22 23 24
B; 123 6 9 16 19 22
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

1

1
1
1
1

[y

23456738
234

23 5

2 45
345
2345

23 6
2 4 6

9
9 13 14 15

9 16 17 18

9 19 20 21

9 22 23 24
9 16 19 22

9
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

1

= = =

[E

23456738
234

23 5

2 45
345
2345

23 6
2 4 6

9
9 13 14 15

9 16 17 18

9 19 20 21

9 22 23 24
9 16 19 22

9
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

345678
34

3 13 14 15

NN NN

9

9

9 16 17 18
9 19 20 21
9

9

9

P P
I = =
N
N
o1 01 01 O1

22 23 24
16 19 22
10 11 12 16 17 18 19 22

AW
=
N
w w ww
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

345678
3 4

3 13 14 15

NN NN

9

9

9 16 17 18
9 19 20 21
9

9

9

P P
I T =
N
N
o1 01 01 O1

22 23 24
16 19 22
10 11 12 16 17 18 19 22

AW
—
N
w w ww
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

345678
3 4

3 13 14 15

NN NN

9

9

9 16 17 18
9 19 20 21
9

9

9

P P
I T =
N
N
o1 01 01 O1

22 23 24
16 19 22
10 11 12 13 14 15 16 17 18 19 22

AW
—
N
w w ww
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

345678
3 4

3 13 14 15

NN NN

9

9

9 16 17 18
9 19 20 21
9

9

9

P P

I T e Sy
N

N
o1 01 01 O1

22 23 24
16 19 22
10 11 12 13 14 15 16 17 18 19 22

AW
—
N
w w ww
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

345678
3 4

3 13 14 15

NN NN

9

9

9 16 17 18
9 19 20 21
9

9

9

P P

I T e Sy
N

N
o1 01 01 O1

22 23 24
16 19 22
10 11 12 13 14 15 16 17 18 19 20 21 22

AW
—
N
w w ww
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

345678
3 4

3 13 14 15

NN NN

9

9

9 16 17 18
9 19 20 21
9

9

9

P P
I S e =
N
N
o1 01 01 O1

22 23 24
16 19 22
10 11 12 13 14 15 16 17 18 19 20 21 22

AW
—
N
w w ww
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

345678
3 4

3 13 14 15

NN NN

9

9

9 16 17 18
9 19 20 21
9

9

9

P P
I S e =
N
N
o1 01 01 O1

22 23 24
16 19 22
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

AW
—
N
w w ww
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

1

1
1
1
1

[y

23456738
234

23 5

2 45
345
2345

23 6
2 4 6

9
9 13 14 15

9 16 17 18

9 19 20 21

9 22 23 24
9 16 19 22

9 13 20 23
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

Bs; 123 5 9 13 14 15

By 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

Bs; 123 5 9 13 14 15

By 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1234267891011 1213 16 19 20 21 22 23

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 123426789 10111213 16 19 20 21 22 23

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1234267 891011121314 1516 17 18 19 20 21 22 23 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip123456789 13 14 15 16 17 18 19 20 22 23

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip123456 7891011121314 1516 17 18 19 20 21 22 23 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

[ G W T WS G T

[ T W A G T

3
3
3

NN NN

NN
w W

4
4

N
o1 01 01 O1

56738

o1

DO OO O

9 10 11 12

9 13 14 15

9 16 17 18

9 19 20 21

9 22 23 24
9 16 19 22

9 13 20 23

9 14 17 24
910 21 24
9
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

[ G W T WS T

= = = R

3
3
3

NN NN

NN
w W

4
4

N
o1 01 01 O1

56738

o1

(o)l e) Ie) INe) INe)}

9 10 11 12

9 13 14 15

9 16 17 18

9 19 20 21

9 22 23 24
9 16 19 22

9 13 20 23

9 14 17 24
910 21 24
910 13 14 15 16 17 19 20 21 22 24
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The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

[ G W T WS T

= = = R

3
3
3

NN NN

NN
w W

4
4

N
o1 01 01 O1

56738

o1

(o)l e) Ie) INe) INe)}

13 14 15
16 17 18
19 20 21
22 23 24
16 19 22
13 20 23
14 17 24
21 24
11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

By
B>

[ G W T WS G T

[ G W A A G T

3
3
3

NN NN

NN
w W

4
4

N
o1 01 01 O1

56738

c1 o

(e o) I ) Ie) INe)}

9 10 11 12

9 13 14 15

9 16 17 18

9 19 20 21

9 22 23 24
9 16 19 22

9 13 20 23

9 14 17 24
910 21 24
9 11 18 23

RIAREA (SRALAS)

Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123 9 17

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi» 123 9 17

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123456 9 10 11 12 13 14 15 16 17 18 19 22 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123456 9 10 11 12 13 14 15 16 17 18 19 22 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123456 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123456 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123456 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 12345678

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123456 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 12345678

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»p123456 7891011121314 1516 17 18 19 20 21 22 23 24

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123 7 9 17 21 23

RERSA (BRIEKE) Codes and Designs



The 5-(24,8,1) design, |[BN B’| € {4,2,0}
P =1{1,2,...,24}. We may take B as:

B 123456738

B, 1234 9 10 11 12

B; 123 5 9 13 14 15

By, 12 45 9 16 17 18

Bs 1 345 9 19 20 21

Bs 2345 9 22 23 24
B; 123 6 9 16 19 22

Bg 12 4 6 9 13 20 23
By 1 34 6 9 14 17 24
Bip 12 56 9 10 21 24
Bi11 3 56 9 11 18 23
Bi»123 7 9 17 21 23

The characteristic vectors of these 12 blocks generate a
12-dimensional code.
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Uniqueness of the code

By
B>
Bs
Ba
Bs

B>

12345678

1234

123 5

12 45

1 345
2345

123 6

12 4 6

1 34 6

12 56

1 3 56

123 7

9 10 11 12
9 13 14 15
9 16 17 18
9 19 20 21
9 22
9 16 19 22
9 13 20
9 14 17
910 21
9 11 18
17 21

Thus, the code generated by the design is unique. This self-dual
code is known as the extended binary Golay code.

23 24

23
24
24

23

23
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Uniqueness of the code

By
B>
Bs
Ba
Bs

B>

12345678

1234

123 5

12 45

1 345
2345

123 6

12 4 6

1 34 6

12 56

1 3 56

123 7

9 10 11 12
9 13 14 15
9 16 17 18
9 19 20 21
9 22
9 16 19 22
9 13 20
9 14 17
910 21
9 11 18
17 21

Thus, the code generated by the design is unique. This self-dual
code is known as the extended binary Golay code.
Next we show that the code determines the design uniquely.

23 24

23
24
24

23

23
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Mendelsohn equations for t-(v, k, \) design (P, B)

Ni=[{BeB[IcB} ([[=1)
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Mendelsohn equations for t-(v, k, \) design (P, B)

Ni=H{{BeB|lICB} (|I=1)
For S C P, let

n(S)=|{BeB|i=|BnS|}.
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Mendelsohn equations for t-(v, k, \) design (P, B)

N={BeB|IcEY (=)
For S C P, let

n(S)=|{BeB|i=|BnS[}.

; C) ni(S) = >\j<|f|) 0<j<)

Then

Proof: Count
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Mendelsohn equations for t-(v, k, \) design (P, B)

~[{BeB|ICBY (=)
For S C P, let

n(S)=|{BeB|i=|BnS[}.

g;£) (BD 0<j<u).

{(J.BY| JC SNB, |J =}

Then

Proof: Count

in two ways.

REEEEA (GRILKE)




n(S) = {B € B|i=|BNS|}

Let C be the binary code of the design (P, B).

RIAREA (SRALAS)



n(S) = {B € B|i=|BNS|}

Let C be the binary code of the design (P, B).
Write n;(supp(x)) = n;(x) for x € Fy.

RERSA (BRIEKE) Codes and Designs



n(S) = {B € B|i=|BNS|}

Let C be the binary code of the design (P, B).
Write n;(supp(x)) = n;(x) for x € Fy.

If x € C*, then |B Nsupp(x)| is even, so

ni(x)={BeB|i=|BNsupp(x)|}| =0 foriodd.
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n(S) = {B € B|i=|BNS|}

Let C be the binary code of the design (P, B).
Write n;(supp(x)) = n;(x) for x € Fy.

If x € C*, then |B Nsupp(x)| is even, so

ni(x)={BeB|i=|BNsupp(x)|}| =0 foriodd.

0 wt(x) (/) (Wtj(-x)) 0<j<t).

i:even

Thus

RERSA (BRIEKE) Codes and Designs



(P, B): 5-(24,8,1) design

0<i<zW:t(X) </I> )=y <WtJ(X)) 0=j=5)

i even

REEEEA (GRILKE)



(P, B): 5-(24,8,1) design

oo O (Wtfx)) (0<j<5).

i: even

Taking x € C* with 0 < wt(x) < 8 gives no solution. This means
that C+ has minimum weight 8.
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(P, B): 5-(24,8,1) design

oo O (Wtfx)) (0<j<5).

i: even

Taking x € C* with 0 < wt(x) < 8 gives no solution. This means
that C*+ has minimum weight 8.

Take x € C = C* with wt(x) = 8. Then there are six equations for
five unknowns ng, ny, ng, ng, ng. The unique solution is

(no, Ny, Ny, Ng, ng) = (30, 448, 280, 0, 1)
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(P, B): 5-(24,8,1) design

oo O (Wtfx)) (0<j<5).

i: even

Taking x € C* with 0 < wt(x) < 8 gives no solution. This means
that C*+ has minimum weight 8.

Take x € C = C* with wt(x) = 8. Then there are six equations for
five unknowns ng, ny, ng, ng, ng. The unique solution is

(no, Ny, Ny, Ng, ng) (30 448 280 0 1)
This implies supp(x) € B. Thus
B = {supp(x) | x € C, wt(x) = 8}.

Now the uniqueness of the design follows from that of C.

RERSA (BRIEKE) Codes and Designs



D: 5-(24,8,1) design (Witt system).
@ The binary code C of D is a doubly even self-dual [24,12, 8]
code.
@ The binary code C of D is unique up to isomorphism.
o {supp(x) | x € C, wt(x) =8} = B.
@ There is a unique 5-(24,8,1) design up to isomorphism.

The Assmus—Mattson theorem implies that every binary doubly even
self-dual [24, 12, 8] code coincides with the binary code of a
5-(24,8,1) design, and hence such a code (the extended binary Golay
code) is also unique.
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The Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v},

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.
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The Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v},

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.

@ C: [24,12,8] binary doubly even self-dual (C = C*) code, so
k = 8 and C has only weights 0, 8,12, 16, 24.

S ={wt(x)| x € C*, 0 < wt(x) <24} = {8,12,16},
t=k—|S|=8-3=5.
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Uniqueness of the extended binary Golay code

C: [24,12, 8] binary doubly even self-dual (C = C*) code.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24},

B = {supp(x) | x € C, wt(x) = 8},

for some \.
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Uniqueness of the extended binary Golay code

C: [24,12, 8] binary doubly even self-dual (C = C*) code.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24},

B = {supp(x) | x € C, wt(x) = 8},

for some \.

o If \> 1, then 3B,B' € B, B# B/, [BN B'| > 5. Then
wt(x(B) + x(B)) < 8, a contradiction. Thus A = 1.
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Uniqueness of the extended binary Golay code

C: [24,12, 8] binary doubly even self-dual (C = C*) code.
@ The Assmus—Mattson theorem implies (P, B) is a 5-(24,8, \)
design, where P = {1,2,...,24},

B = {supp(x) | x € C, wt(x) = 8},

for some \.

o If \> 1, then 3B,B' € B, B# B/, [BN B'| > 5. Then
wt(x(B) + x(B)) < 8, a contradiction. Thus A = 1.

@ So C is the binary code of a 5-(24,8,1) design which was
already shown to be ungqiue.

This proves the uniqueness of the extended binary Golay code.

RERSA (BRIEKE) Codes and Designs



Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v},

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v},

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v},

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:

larger k = smaller C = larger C* = larger S
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v},

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:

larger k = smaller C = larger C* = larger S
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Applicability of the Assmus—Mattson theorem

Let C be a binary code of length v, minimum weight k.

P={1,2,...,v},

B = {supp(x) | x € C, wt(x) = k},

S ={wt(x) | x € C*, 0 < wt(x) < v},
t=k—|S|

Then (P, B) is a t-(v, k, \) design for some \.

The conclusion is stronger if k is large and |S| is small. These are
conflicting requirments:

larger k = smaller C = larger C* = larger S
suppose C = C*, doubly even = S not too large
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S={wt(x) | x € C, 0 <wt(x) < v},
5=k—1S|.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S={wt(x) | x € C, 0 <wt(x) < v},
5=k—1S|.

o k=8 15=3,5=1{8,12,16}, v =24,
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S={wt(x) | x € C, 0 <wt(x) < v},
5=k—1S|.

° k=8,15=3,5=1{812,16}, v =24,
o k=12, |S| =7, S ={12,16,20,24,28,32,36}, v = 48.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S={wt(x) | x € C, 0 <wt(x) < v},
5=k—1S|.

° k=8,15=3,5=1{812,16}, v =24,
o k=12, |S| =7, S ={12,16,20,24,28,32,36}, v = 48.

@ k=16,|S| =11, S = {16, 20, 24,28, 32, 36,40, 44, 48,52, 56},
v=T2.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S={wt(x) | x € C, 0 <wt(x) < v},
5=k—1S|.

° k=8,15=3,5=1{812,16}, v =24,
o k=12, |S| =7, S ={12,16,20,24,28,32,36}, v = 48.

@ k=16,|S| =11, S = {16, 20, 24,28, 32, 36,40, 44, 48,52, 56},
v=T2.

In general, Vk: a multiple of 4, |S| = k — 5,

S={k,k+4,k+8,....5k—24=v—k}

v =6k — 24 = 24m, where k = 4m + 4.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S={wt(x) | x € C, 0 <wt(x) < v},
5=k—1S|.

° k=8,15=3,5=1{812,16}, v =24,
o k=12, |S| =7, S ={12,16,20,24,28,32,36}, v = 48.

@ k=16,|S| =11, S = {16, 20, 24,28, 32, 36,40, 44, 48,52, 56},
v=T2.

In general, Yk: a multiple of 4, |S| = k — 5,

S={k,k+4,k+8,....,5k—24=v—k}

v = 6k — 24 = 24m, where k = 4m + 4.
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S={wt(x) | x € C, 0 <wt(x) < v},
5=k—1S|.

° k=8,15=3,5=1{812,16}, v =24,
o k=12, |S| =7, S ={12,16,20,24,28,32,36}, v = 48.

@ k=16,|S| =11, S = {16, 20, 24,28, 32, 36,40, 44, 48,52, 56},
v=T2.

In general, Yk: a multiple of 4, |S| = k — 5,

S={k,k+4,k+8,....5k—24=v—k}

v =6k — 24 = 24m, where k = 4m + 4.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m]| code has
minimum weight at most 4m + 4.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m]| code has
minimum weight at most 4m + 4.

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m]| code has
minimum weight at most 4m + 4.

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

For m > 1, an extremal binary doubly even self-dual code gives a
5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.
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Extremal binary doubly even self-dual codes

Theorem (Mallows—Sloane, 1973)

For m > 1, a binary doubly even self-dual [24m, 12m]| code has
minimum weight at most 4m + 4.

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

For m > 1, an extremal binary doubly even self-dual code gives a
5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.
@ m = 1: the extended binary Golay code and the 5-(24,8,1)
design
@ m = 2: Houghten-Lam-Thiel-Parker (2003): unique [48, 24, 12]
code and a 5-(48, 12, 8) design which is unique under
self-orthogonality.
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Extremal binary doubly even self-dual codes

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

@ For m > 1, an extremal binary doubly even self-dual code gives a
5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.

@ For m > 3, neither a code nor a design is known.
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Extremal binary doubly even self-dual codes

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

@ For m > 1, an extremal binary doubly even self-dual code gives a
5-(24m,4m + 4, \) design by the Assmus—Mattson theorem.

@ For m > 3, neither a code nor a design is known.

Theorem (Zhang, 1999)

There does not exist an extremal [24m, 12m, 4m + 4] binary doubly
even self-dual code for m > 154.
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