
Binary codes of t-designs and Hadamard
matrices

Akihiro Munemasa1

1Graduate School of Information Sciences
Tohoku University

November 8, 2013
JSPS-DST Asian Academic Seminar 2013
Discrete Mathematics and Its Applications

The University of Tokyo

Akihiro Munemasa (Tohoku University) Hadamard Matrices 1 / 22



Overview

R. C. Bose (1901–1987)
Combinatorial design theory
association schemes, symmetric (square) designs,
Hadamard designs
Algebraic coding theory
BCH code Dijen Ray-Chaudhuri (1933–)
Finite geometries

In this talk, I will connect codes and Hadamard matrices directly,
present an answer to a question of Assmus–Key (1992), and try
to reveal the theory behind (integral lattices).

Akihiro Munemasa (Tohoku University) Hadamard Matrices 2 / 22



Analytic characterization of Hadamard
matrices

The function
f : det(xij) : [−1, 1]n

2 → R.

satisfies Hadamard’s inequality,

f(x) ≤ nn/2

equality is achieved (if? and) only if n = 1, 2 or n ≡ 0 (mod 4).

Conjecture: “if and only if.”
Amounts to finding a square matrix H of order n with entries in
{±1} such that HH> = nI. The smallest unsettled case is
n = 668.
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Hadamard matrices

Definition
A Hadamard matrix of order n is an n× n matrix with entries in
{±1}, such that rows are pairwise orthogonal:

HH> = nI.

Example
The Hadamard matrix of Sylvester type, where n = 2v:

H ⊗ · · · ⊗H,

where

H =

[
1 1
1 −1

]
.
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Existence of Hadamard matrices

A Hadamard matrix of order n exists for

n = 1, 2, 4, 8, 12, 16, . . . (multiples of 4), . . . , 664, 672, . . .

Except n = 1, 2, the existence of a Hadamard matrix of order n
implies n ≡ 0 (mod 4):

1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1
1 · · · 1 1 · · · 1 −1 · · · − 1 −1 · · · − 1
1 · · · 1 −1 · · · − 1 1 · · · 1 −1 · · · − 1

Conjecture
A Hadamard matrix of order n exists for any n ≡ 0 (mod 4).
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Classification of Hadamard matrices

If H is a Hadamard matrix, then so is H>.

Definition
Two Hadamard matrices H1, H2 are said to be equivalent if

∃P,Q, PH1Q = H2,

where P and Q are signed permutation matrices.

The numbers of equivalence classes of Hadamard matrices are
known for orders up to 32.

order 1 2 4 8 12 16 20 24 28 32
number 1 1 1 1 1 5 3 60 487 13,710,027

16, 20: Hall; 24: Ito–Leon–Longyear, Kimura; 28: Kimura,
Spence; 32: Kharaghani and Tayfeh-Rezaie (2012).
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Invariants of Hadamard matrices

Combinatorial invariants by counting
Algebraic invariants (linear algebra over finite fields)

Given a Hadamard matrix H, consider the linear span of its row
vectors.
→ nonsense for Q or any field F of characteristic 0, or
characteristic p with (p, n) = 1.
Otherwise, it is a proper subspace of Fn.

Definition
If F is a finite field, then a vector subspace of Fn is called a
(linear) code of length n.
For F = F2, binary code. For F = F3, ternary code.

But in F2, 1 = −1, so the linear span is again a nonsense. . . .
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Normalized and binary Hadamard matrices
Every Hadamard matrix is equivalent to the one with 1
everywhere in the first row:

H =


1 1 · · · 1
· · ·
±1
· · ·


Such a Hadamard matrix H is said to be normalized (we
assume always in what follows). The binary Hadamard matrix
associated to H is

B =
1

2
(H + J) =


1 1 · · · 1
· · ·

1 or 0
· · ·


where J is the all-one matrix.
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The code of a Hadamard matrix

Definition
The binary code of a Hadamard matrix H is defined as the linear
span over F2 of any binary Hadamard matrix associated to H.

It is non-trivial to check that this is well-defined.

Definition
The ternary code of a Hadamard matrix H is defined as the
linear span over F3 of H.

This is simply Fn
3 if H has order n and 3 - n.
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Weight

For x = (x1, . . . , xn) ∈ Fn, we write

supp(x) = {i | 1 ≤ i ≤ n, xi 6= 0},
wt(x) = | supp(x)|.

For a code C ⊂ Fn, its minimum weight is

min{wt(x) | 0 6= x ∈ C}.

The minimum weight of the binary (ternary) code is an invariant
of a Hadamard matrix.
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Assmus and Key (1992)

Fact
Let H be a Hadamard matrix of order 24. The following are
equivalent.

The binary code of H has minimum weight 8 (largest).
The ternary code of H> has minimum weight 9 (largest).

The binary code of H has dimension 12, and the minimum
weight is 4 or 8.
The ternary code of H> has dimension 12, and the
minimum weight is 6 or 9.
There are two (up to equivalence) Hadamard matrices H
satisfying the above equivalent conditions.
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Verification using MAGMA

There are 60 Hadamard matrices of order 24 up to equivalence.
Database is available in MAGMA computer algebra system.

DB:=HadamardDatabase();
NumberOfMatrices(DB,24) eq 60;
H24s:=[Matrix(DB,24,i):i in [1..60]];
normalize:=func<H|H*DiagonalMatrix(Eltseq(H[1]))>;
J:=Matrix(Integers(),24,24,[1:i in [1..24ˆ2]]);
bH:=func<H|Parent(H)![x div 2:x in Eltseq(normalize(H)+J)]>;
bC:=func<H|LinearCode(ChangeRing(bH(H),GF(2)))>;
tCT:=func<H|LinearCode(ChangeRing(Transpose(H),GF(3)))>;
[i:i in [1..60]|MinimumWeight(bC(H24s[i])) eq 8] eq [3,9];
[i:i in [1..60]|MinimumWeight(tCT(H24s[i])) eq 9] eq [3,9];

Total time: 0.290 seconds, Total memory usage: 32.09MB
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Assmus and Key (1992)

Fact
Let H be a Hadamard matrix of order 24. The following are
equivalent.

The binary code of H has minimum weight 8 (largest).
The ternary code of H> has minimum weight 9 (largest).

Why are the behavior modulo 2 and modulo 3 related?
(Intuitively speaking, this is unusual. cf. Chinese Remainder
Theorem).
Why transpose?
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Ternary codes of H

If C is a code of length n over F, then the dual code of C is
defined as

C⊥ = {x ∈ Fn | x · y = 0 (∀y ∈ C)}.

where

x · y =
n∑

i=1

xiyi.

Then dimC⊥ = n− dimC. The code C is said to be
self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥.

C = the ternary code of a Hadamard matrix H.

HH> = nI and 3|n =⇒ HH> ≡ 0 (mod 3) =⇒ C ⊂ C⊥.
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The ternary code of H is self-dual

Lemma
Let n be an integer divisible by 4. If 3|n and 9 - n, then the
ternary code of a Hadamard matrix of order n is self-dual.

In particular, for n = 24, the ternary code C3 of H>, (H: a
Hadamard matrix of order 24) is self-dual.

C3 = span of rows of H> = span of columns of H

C⊥
3 = ( span of columns of H )⊥ = left kernel of H

C3 = C⊥
3 = left kernel of H
= {v | vH = 0}.
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The binary code of H is doubly even self-dual

A binary code C is said to be doubly even if

wt(x) ≡ 0 (mod 4) (∀x ∈ C).

Lemma
Let C be the binary code of a Hadamard matrix of order n.

If n ≡ 8 (mod 16), then C is doubly even self-dual.

In particular, for n = 24, the binary code C2 of H, (H: a
Hadamard matrix of order 24) is doubly even self-dual.
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H: a Hadamard matrix of order 24

C3: the ternary code of H>.
C3 = C⊥

3 , C3 has only weights divisible by 3.
C2: the binary code of H.
C2 = C⊥

2 , C2 has only weights divisible by 4 (doubly even).

Fact (Assmus–Key, 1992)
The following are equivalent:

C2 has minimum weight 8 (largest).
C3 has minimum weight 9 (largest).

It turns out C3 has no vectors of weight 3 for any H.
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H: a Hadamard matrix of order 24

Theorem
The following are equivalent.

1 C2 has weight 4.
2 C3 has weight 6.

Proof.

1√
3
v ∈ 1√

3
Z24

isometry 1√
24

H

−−−−−−−−→ 1√
2
u = 1√

2
1
6
vH ∈ 1√

2
Z24

lift

x mod 2

y
v ∈ C3, wt = 6 u ∈ C2, wt = 4

v ∈ C3 = left kernel of H =⇒ vH ≡ 0 (mod 3) (In fact, vH ≡ 0
(mod 6)). Moreover, 2 = ‖ 1√

3
v‖2 = ‖ 1√

2
u‖2.
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Unimodular lattices

1√
3
v ∈ 1√

3
Z24

isometry 1√
24

H

−−−−−−−−→ 1√
2
u = 1√

2
1
6
vH ∈ 1√

2
Z24

The idea behind this is that, the isometry 1√
24
H maps the

unimodular lattice
1√
3
C3 +

√
3Z24

to a “neighbor” of the unimodular lattice

1√
2
C2 +

√
2Z24

and 1√
3
v, 1√

2
u are “roots” of these.
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H: a Hadamard matrix of order 48
Similarly, one can consider a code over Z/4Z, the ring of
integers modulo 4. The Euclidean weight of a vector
v ∈ (Z/4Z)n is

wt(v) =
n∑

i=1

v2i ,

where we regard vi ∈ {0,±1, 2} ⊂ Z.

Theorem (Munemasa–Tamura, 2012)
C4: the code over Z/4Z with generator matrix B = 1

2
(H + J).

C3: the ternary code of H>.

Then both C4 and C3 are self-dual. Moreover, the following are
equivalent:

C4 has minimum Euclidean weight 24 (largest).
C3 has minimum weight 15 (largest).
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H: a Hadamard matrix of order 48

Theorem (Munemasa–Tamura, 2012)
C4: the code over Z/4Z with generator matrix B = 1

2
(H + J).

C3: the ternary code of H>.

Then both C4 and C3 are self-dual. Moreover, the following are
equivalent:

C4 has minimum Euclidean weight 24 (largest).
C3 has minimum weight 15 (largest).

1√
3
v ∈ 1√

3
Z24

isometry 1√
48

H

−−−−−−−−→ 1
2
u = 1

2
1
6
vH ∈ 1

2
Z24

lift

x mod 4

y
v ∈ C3, wt = 12 u ∈ C2, wt = 16

This is not sufficient; one must also consider smaller weights.
Akihiro Munemasa (Tohoku University) Hadamard Matrices 21 / 22



Hadamard matrices of order 48 and ternary
codes

Theorem
If C is a ternary self-dual code of length 48 and minimum weight
15 (largest possible), then C is the ternary code of a Hadamard
matrix.

Unlike the case n = 24, the following problem is still open.

Problem
classify ternary self-dual codes of length 48 with minimum
weight 15, or
classify Hadamard matrices of order 48 whose ternary code
has minimum weight 15.
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