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The symplectic polar graph associated with the group
Sp(2n, 2):

X = V (2n, 2)− {0}
u ∼ v ⇐⇒ orthogonal

SRG(22n − 1, 22n−1 − 1, 22n−2 − 3, 22n−2 − 1).

Another description:
V = V (2, 2n), f : V × V → GF(2n): a nondegenerate
alternating form.

X = V − {0}
u ∼ v ⇐⇒ Tr f(u, v) = 0.



SRG(22n − 1, 22n−1 − 1, 22n−2 − 3, 22n−2 − 1).

There is a graph having these parameters but not
isomorphic to the symplectic polar graph.

W = V (3, 2n), Q : W → GF(2n): a nondegenerate
quadratic form.

X = {〈x〉 | x ∈ W, Q(x) 6= 0, 〈x〉 6= W⊥},
〈x〉 ∼ 〈y〉 ⇐⇒ 〈x, y〉 : secant or tangent.

In both graphs, there are two kinds of edges.



Note that, in Sp(2n, 2)-graph, given 0 6= u ∈ V (2, 2n),

|{v ∈ V (2, 2n) | v 6= 0, v 6= u, f(u, v) = 0}| = 2n − 2,

|{v ∈ V (2, 2n) | f(u, v) 6= 0, Tr f(u, v) = 0}| = 22n−1 − 2n.

In O(3, 2n)-graph, given a point 〈x〉 ∈ X,

|{〈y〉 ∈ X | 〈x, y〉 tangent}| = 2n − 2,

|{〈y〉 ∈ X | 〈x, y〉 secant}| = 22n−1 − 2n.

Q→ alternating form f on W = W/W⊥.
Given 〈x〉, 〈y〉 ∈ X with Q(x) = Q(y) = 1,

Q(αx+ βy) = α2 + f(x̄, ȳ)αβ + β2.

∃t ∈ GF(2n), t2 + bt+ 1 = 0 ⇐⇒ b = 0 or Tr b−1 = 0
∃t ∈ GF(2n), t2 + t+ b = 0 ⇐⇒ Tr b = 0 So 〈x, y〉
tangent or secant if and only if

Tr f(x̄, ȳ)2
n−2 = 0 (not Tr f(x̄, ȳ) = 0)



V = V (2, 2n), f : V × V → GF(2n): alternating. Fix a
positive integer i with (i, 2n − 1) = 1.

X = V − {0},
x ∼ y ⇐⇒ Tr(f(x, y)i) = 0.

Then SRG(22n − 1, 22n−1 − 1, 22n−2 − 3, 22n−2 − 1).

i = 1: ordinary symplectic polar graph
i = −1: graph obtained from O(3, 2n).

BCN=Brouwer-Cohen-Neumaier, Distance-Regular
Graphs, 1989
BCN gives a 3-class association scheme based on
O(3, 2n). Relations are ‘secant’, ‘external’, ‘tangent’.
secant ∪ tangent gives a SRG.



X = { external points, 6= nucleus} in O(3, 2n)-space.

R1 = {(〈x〉, 〈y〉) | 〈x, y〉 secant},
R2 = {(〈x〉, 〈y〉) | 〈x, y〉 external},
R3 = {(〈x〉, 〈y〉) | 〈x, y〉 tangent}.

BCN: these relations define an association scheme.

Since there is no group having Ri’s as orbitals, the proof
has to be a geometric one. One needs to show that

pkij = |{〈z〉 | (〈x〉, 〈z〉) ∈ Ri, (〈z〉, 〈y〉) ∈ Rj}|

depends only on k and is independent of (〈x〉, 〈y〉) ∈ Rk.



The reason why I was interested in this association
scheme was:

Ikuta and I found a family of complex Hadamard matrices,
this was one of the few in E. van Dam’s list (1999) of
3-class association schemes which admits complex
Hadamard matrices.

I wanted make sure that
these association schemes exist,
extend our results to obvious larger family.

O(3, 2n) =⇒ O(2n+ 1, 2n).

BCN went on to claim ∃ 3-class association scheme for
O(2m+ 1, 2n) without proof, without phij.



BCN went on to claim ∃ 3-class association scheme:
W = V (2m+ 1, q) with quadratic form,

X = { external points, 6= nucleus},
R1 = {(〈x〉, 〈y〉) | 〈x, y〉 secant},
R2 = {(〈x〉, 〈y〉) | 〈x, y〉 external},
R3 = {(〈x〉, 〈y〉) | 〈x, y〉 tangent}.

Frédéric Vanhove: this is incorrect for m > 1.

R3 = {(〈x〉, 〈y〉) | nucleus ∈ 〈x, y〉 tangent},
R4 = {(〈x〉, 〈y〉) | nucleus /∈ 〈x, y〉 tangent},

If m = 1, then R4 = ∅. R1 ∪R3 ∪R4: SRG.



BCN went on to claim ∃ 3-class association scheme:
W = V (2m+ 1, q) with quadratic form,

X = { external points, 6= nucleus},
R1 = {(〈x〉, 〈y〉) | 〈x, y〉 secant},
R2 = {(〈x〉, 〈y〉) | 〈x, y〉 external},
R3 = {(〈x〉, 〈y〉) | 〈x, y〉 tangent}.

Frédéric Vanhove: this is incorrect for m > 1.

R3 = {(〈x〉, 〈y〉) | nucleus ∈ 〈x, y〉 tangent},
R4 = {(〈x〉, 〈y〉) | nucleus /∈ 〈x, y〉 tangent},

If m = 1, then R4 = ∅. R1 ∪R3 ∪R4: SRG.
It admits ‘twisted’ symplectic description.



V = V (2m, 2n), f : V × V → GF(2n): alternating. Fix a
positive integer i with (i, 2n − 1) = 1.

X = V − {0},
u ∼ v ⇐⇒ Tr(f(u, v)i) = 0.

Then SRG(22mn − 1, 22mn−1 − 1, 22mn−2 − 3, 22mn−2 − 1).

i = 1: ordinary symplectic polar graph
i = −1: graph obtained from O(2m+ 1, 2n).

R1 = {(u, v) | f(u, v) 6= 0, Tr(f(u, v)i) = 0},
R2 = {(u, v) | Tr(f(u, v)i) = 1},
R3 = {(u, v) | 〈u〉GF(2n) = 〈v〉GF(2n)},
R4 = {(u, v) | f(u, v) = 0, 〈u〉GF(2n) 6= 〈v〉GF(2n)}.



SRG(22mn − 1, 22mn−1 − 1, 22mn−2 − 3, 22mn−2 − 1)
λ+ 2 = µ

3- or 4-class
association scheme

secant∪tangent−−−−−−−−→ SRGy
GMW difference set −−−→ Hadamard design

(Bill Kantor, Nov. 16, 2013)



V = V (2m, 2n), f : alternating form on V .

R1 = {(x, y) | f(x, y) 6= 0, Tr f(x, y) = 0},
R2 = {(x, y) | Tr f(x, y) 6= 0},
R3 = {(x, y) | 〈x〉GF(2n) = 〈y〉GF(2n)},
R4 = {(x, y) | f(x, y) = 0, 〈x〉GF(2n) 6= 〈y〉GF(2n)}.

D = Tr−1(0)− {0} ⊂ GF(2n)×: difference set.

R1 ∪R3 ∪R4 = {(x, y) | x 6= y, f(x, y) ∈ D ∪ {0}}.

Gordon-Mills-Welch (1969): R1 ∪R3 ∪R4: SRG.

Its isomorphism type depends on the choice of D.
Determined by Jackson-Wild (1997), Kantor (2001).



If D = Tr−1(0)− {0} ⊂ GF(2n)×: difference set, then
µi(D) = {αi | α ∈ D} is also a difference set if
(i, 2n − 1) = 1 (equivalent).

SRG from D has edges {(x, y) | f(x, y) ∈ D ∪ {0}},
SRG from µi(D) has edges {(x, y) | f(x, y) ∈ µi(D) ∪ {0}}.

Jackson-Wild (1997), Kantor (2001):

SRG from D ∼= SRG from µi(D)

⇐⇒ i is a power of 2 modulo 2n − 1.

In particular for i = −1, one obtains non-isomorphic SRG.



More generally, Gordon–Mills–Welch (GMW) difference
set Ingredients:

q: prime power
n ≥ 2

D: difference set whose development is a design with
the same parameters as PG(n− 1, q)

k ≥ 2

Output: difference set whose development is a design
with the same parameters as PG(kn− 1, q)

Isomorphism determined by Jackson-Wild, Kantor.
Setting k = 2m, we have . . .



D ⊂ PG(n− 1, q) = GF(qn)×/GF(q)× a difference set
with parameters

(
qn − 1

q − 1
,
qn−1 − 1

q − 1
,
qn−2 − 1

q − 1
),

D̃ ⊂ GF(qn)× denote the preimage of D.
X the points of PG(2mn− 1, q) based on the vector
space V = V (2m, qn), regarded as a vector space
over GF(q).
f : V × V → GF(qn): alternating.

Since D̃ is invariant under GF(q)×, for [x], [y] ∈ X, the
condition f(x, y) ∈ D̃ and f(x, y) = 0 are independent of
the choice of representatives.



X: the points of PG(2mn− 1, q) based on the vector
space V = V (2m, qn), regarded as a vector space over
GF(q).

R0 = {([x], [x]) | [x] ∈ X},
R1 = {([x], [y]) | [x], [y] ∈ X, f(x, y) ∈ D̃},
R2 = {([x], [y]) | [x], [y] ∈ X, f(x, y) 6= 0, f(x, y) /∈ D̃},
R3 = {([x], [y]) | [x], [y] ∈ X, 〈x〉GF(qn) = 〈y〉GF(qn)},
R4 = {([x], [y]) | [x], [y] ∈ X, f(x, y) = 0, 〈x〉GF(qn) 6= 〈y〉GF(qn)}.

Note that, if m = 1, then V = V (2, qn), so

f(x, y) = 0 ⇐⇒ 〈x〉GF(qn) = 〈y〉GF(qn).

Thus R4 = ∅.



Theorem

X: the points of PG(2mn− 1, q) based on the vector
space V = V (2m, qn), regarded as a vector space over
GF(q).

R0 = {([x], [x]) | [x] ∈ X},
R1 = {([x], [y]) | [x], [y] ∈ X, f(x, y) ∈ D̃},
R2 = {([x], [y]) | [x], [y] ∈ X, f(x, y) 6= 0, f(x, y) /∈ D̃},
R3 = {([x], [y]) | [x], [y] ∈ X, 〈x〉GF(qn) = 〈y〉GF(qn)},
R4 = {([x], [y]) | [x], [y] ∈ X, f(x, y) = 0, 〈x〉GF(qn) 6= 〈y〉GF(qn)}.

(X, {Ri}4i=0) is an association scheme.

In particular, one obtains a 3-class association scheme
from O(3, 2n).


