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Then the smallest eigenvalue of the line graph
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In particular, it is independent of s;.
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o I' = (V, E): finite undirected simple
connected graph
e Amin(T'): the smallest eigenvalue of the
adjacency matrix A(I') of I'
0 < AT) = Ain(D)] = XX,

TV
rank m

where X is a |V| x m matrix, giving a
representation:

—Amin(l)  ifu =,
(u,v) =<1 if u~w,
0 otherwise.



The line graph of I' = (V, F) has F as its vertex
set, and e ~ f iff there exists a common vertex
ineand f.
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The line graph of I' = (V, F) has F as its vertex
set, and e ~ f iff there exists a common vertex
ineand f.
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s-claw L(s-claw) = K,

/\min(Ks) = —1.
AmlH(L<F)) 2 —2.

Conversely, all graphs A with A\, (A) > —2 are
essentially known (generalized line graphs +
finitely many exceptions).
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Graphs A with A\, (A) > —2 are classified by
Doob-Cvetkovi¢ (1979). Some examples:

® )\min(Kn) =—1
o Aunin(K12) = —V2
o Auin(Ki3) = —V3

® )\min(CQTHrl) = —2C08 5

2n+1

Amin( < ): _\/§



Cvetkovic—Stevanovi¢ (2003): A, of the
following graph is

s—2—4/s(s+4)
2
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This is the corona of K,, and K.



Cvetkovic—Stevanovi¢ (2003): A, of the
following graph is

s—2—4/s(s+4)
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This is the corona of K,, and K.
The spectrum can be obtained by a formula of
Schwenk (1973).



The corona K, ® K, of K,, and K is the line
graph of the tree
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The corona K, ® K, of K,, and K is the line
graph of the tree

s—2—+/s(s+4)

)\Inin -
2

independent of n

Cvetkovic—Stevanovi¢ (2003): are there other
family of line graphs of trees with constant
smallest eigenvalue?



Let 75, 5,...s, be the tree depicted below:
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Then Apin(L(Ts, 5,...5,)) is the smallest zero of

n

the polynomial g,,(z), where

.....

go(xz) =1, gi(x) =2 +1,
9i(r) = (v + 1 = spi12)gi-1(T) — Sn—iv2gi—2(x).

In particular, it is independent of s;.



The characteristic polynomial of L(75, s, . s, ) iS
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go(x) =1
gi(z) = (x+1—sp_i12)gi—1(x) — Sp—it2gi—2(x),



The characteristic polynomial of L(75, s, . s, ) iS

1 _
(gTH-l + gn H gz Unﬂ“

go(w) =

1
gz(x) = (x +1-— 8n—z’+2)9z’—1($) — Sp—i+20i—

2(z),

Thank you.



