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Hadamard matrices and generalizations

@ A (real) Hadamard matrix of order nis an n x n matrix H
with entries 1, satisfying HH'™ = nl.

@ A weighing matrix of order n and weight k (denoted
W(n, k)) is an n x n matrix W with entries in {0, £1},
satisfying WW'T = kI.

@ A complex Hadamard matrix of order n is an n x n matrix
H with entries in {¢ € C | |£| = 1}, satisfying HH* = nl,
where * means the conjugate transpose.

@ A type Il (or inverse-orthogonal) matrix of order n is an
n X n matrix H with nonzero complex entries, satisfying
HH)" = nl, where (—) means the entrywise inverse.



The tensor (Kronecker) product of two matrices H and K is
(Hi K HpK - Hi K

H® K =

Proposition

If H and K are Hadamard matrices of order n and m,
respectively, then H ® K is a Hadamard matrix of order nm.




The tensor (Kronecker) product of two matrices H and K is

[Hi1 K HpK oo Hip K]
HiK  HpK - HiypK
HoK=| : : ;
HaK HpK -+ HjpK
_Han HpK - HnnK_

HilKKTHjl aF H,'QKKTHJQ “+ .-
= (HinHjp + HipHjp + -+ )ml
= (HHT);ml

= 0;;nml.




HuK HpK - HiK

HaK  HeoK - HppK
H® K = . _ :

Han Hn2K e HnnK

Hi1KK ' Hji + HKK "Hjp + - -
= (HnHjp + HoHpp + - - - )ml
= (HH");ml

= 6;mnl.




HuK HpK - HinK

Hn K HpK -+ HyK
H® K= _ _ :

Han Hn2K e HnnK

Hi1KK ' Hji + HKK "Hjp + - -
= (HnHjp + HoHpp + - - - )ml
= (HH");ml

= 6;mnl.




HllKl H12K2 Hann
H21K1 H22K2 H2nKn

Hanl Hn2K2 HnnKn

Hi KKy Hjy + Hoa KoKy Hip + - -
= (HinHj1 + HigHjpp + -+ - )ml
= (HH");ml

= d;;mnl.
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If His a Hadamard matrix of order n, and K1, ..., K, are
Hadamard matrices of order m, then
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Proposition (Dita's construction)

If His a complex Hadamard matrix of order n, and
Ki,..., K, are complex Hadamard matrices of order m, then
HuKi HipkKy -+ HiK,
He (K. .. K,) = H21-K1 H22.K2 Hz,?Kn
HiKi HiKo - Hunk,
is a complex Hadamard matrix of order nm.




Proposition (Dita's construction)

If H is an inverse-orthogonal

Ki, ..., K, are inverse-orthogonal
Hi1 K1

Ho1 K-

Ho (K. K= | o
Hanl

is an inverse-orthogonal

matrix of order n, and

matrices of order m, then

H12 K2 Hann
H22 K2 H2nKn
Hn2K2 HnnKn

matrix of order nm.




Proposition (Dita's construction)

If H is an inverse-orthogonal matrix of order n, and
Ki, ..., K, are inverse-orthogonal matrices of order m, then
HuKi HipkKy -+ HiK,
He (K. .. K,) = H21-K1 H22.K2 Hz,?Kn
Hiki HiKo - Huk,
is an inverse-orthogonal matrix of order nm.

Not only K but also H can be replaced by H;, ..., H,.



Definition (generalized tensor product)

Hy, ..., H,, : matrices of order n,

Ki, ..., K, : matrices of order m.
Let Aj be the diagonal matrix defined by
(A= (Hn)y (1 <ij<m, 1<h<n)
The generalized tensor product is

(Hi,...,Hp) ® (Ky, ..., Kp)

AunKi Ak, - AnK,
A21}<1 A22l<2 A2nl'(n

An1l<1 An2l<2 Ann;(n




Proposition (Hosoya and Suzuki, 2003)

Hi, ..., H, : matrices of order n,
Ki, ..., K, : matrices of order m,
(D)= (Hp);j (1<i,j<m, 1<h<n)

Then the generalized tensor product

(Hi,...,Hyn) ® (Ky, ..., Kp)

A11 Kl A12 K2 o A1nl'(n
. A21 Kl A22 K2 o A2nl<n
An1 Kl An2,<2 T Annl'(n

is an inverse-orthogonal matrix of order mn if and only if
Hi, ..., H, Ki,..., K, are inverse-orthogonal matrices.




The method of weaving

M :m x n (0, 1)-matrix,

r; :row sum of M (1<i<m),
A; :ri X r; matrix (1<i<m),
¢ :column sum of M (1<j<n),
B; :¢c; x ¢; matrix (1<j<n)
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The method of weaving

M :m x n (0, 1)-matrix,

r; :row sum of M (1<i<m),

A; :ri X r; matrix (1<i<m),
¢; :column sum of M (1< <n),
B; :¢c; x ¢; matrix (1<j<n)

Set . ]
N = Z = Z G.
i=1 j=1

The method of weaving gives a weighing matrix W(N, ab)
provided

A; :W(r;,a) (1<i<m),
B; :W(gj, b) (1<j<n).
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Al [3 X 3]
A2 [2 X 2]
A3 [2 X 2]

<
I

W ===

B
[3 x 3]

_ OO
= O = O
N = O =

B>
[1x 1]

O
O

NN W

Bs
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o
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Al [3 X 3]
A2 [2 X 2]
A3 [2 X 2]

1 10 1| 3
M=1|1 01 0| 2
1 0 0 1 2
3112
Bl B2 B3 B4
Bx3] [I1x1] [1x1] [2x2]
3x3 3x1 0] 3x2
2x3 0] 2x1 (0]

2x3 0] @) 22
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Al [3 X 3]
A2 [2 X 2]
A3 [2 X 2]

1101 3
M=1]1 01 0| 2
100 1] 2
3112
B, B, Bs B,
[3x3] [I1x1] [1x1] [2x2]
3x3 3xl1 0] 3x2
2x3 0] 2x1 0]

2x3 0] 0] 2x2
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W R
R OO~
= O = O
N = O
N

B, B, B B,
Bx3] [I1x1] [1x1] [2x2]
Al [3x3] 3x3 3x1 O 3x2
A [2x2] 2x3 o 2x1 0]
As [2x2] 2x3 o 0] 2x2

Aiiri X r, Bj:¢ X ¢ — rj X ¢; matrix
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W R
R OO~
= O = O
N = O
N

B, B, B B,
Bx3] [1x1] [1x1] [2x2]
A [3x3] 3x3 3x1 O 3x2
A, 2x2] 2x3 O 2x1 O
As [2x2] 2x3 o 0] 2x2

Aiiri X r, Bj:¢ X ¢ — rj X ¢; matrix

Ay :3x3, By:2x2— 3 x 2 matrix (Ares)(e] Bs)



110 1] 3
M=|1 0 1 0| 2
100 1] 2
3112
Bl B2 B3 B4
[3 x 3] [1 x 1] [1x 1] [2 x 2]
A]_ [3 X 3] A]_e]_e;rB]_ A]_GQEIBQ (0] A]_E3€1FB4

A2 [2 X 2] Azele;—Bl 0] A2€2€1TB3 0]
A3 [2 X 2] A3e1e3TBl 0] (0] A3€2€§B4
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Weaving with respect to M = J

W =
W =
W =
W ===
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Weaving with respect to M = J

1 11 1| 4
M=11 11 1| 4
1 1 1 1| 4
3333
B, B> B3 By

[3 x 3] [3 x 3] [3 x 3] [3 x 3]
A [4x4] Aee] B, Aee] B, Aeze] Bs Aese] B,
A2 [4 X 4] A2e1e2TBl Azeze2T 82 A2E3€2T B3 /42946;r B4
A3 [4 X 4] A3e1e3TBl /43626:;r BQ A3e3e3T B3 A3e4e;— B4
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Weaving with respect to M = J

1 11 1| 4
M=11 11 1| 4
1 1 1 1| 4
3333
B, B> B3 By

[3 x 3] [3 x 3] [3 x 3] [3 x 3]
A [4x4] Aee] B, Aee] B, Aeze] B; Aese] B,
A2 [4 X 4] AQE]_G;r Bl A2e2e2T Bz /42E3€2T B3 /42946;r B4
A3 [4 X 4] A3e1e3T Bl /4362(?,:;r 82 A3e3e3T B3 A3e4e;— 84

[Aeje] B] = [AE;B]]
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Weaving with respect to M = J

B; B, Bs B,
[3 x 3] [3 x 3] [3 x 3] [3 x 3]
Al [4x4] Aeel B AeeB Aesel B; Aeqe] B,
Ay [4x4] Aeie, By Aere, B, Arese) Bs Asese, B,
Az [4x4] Aseie] By Asere; B, Asesel By Aszeqe; B,

[Aeje] B] = [AE;B]]
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Weaving with respect to M = J

B; B, Bs B,
[3 x 3] [3 x 3] [3 x 3] [3 x 3]
Al [4x4] Aee Bl Aee B Aesel B; Aese] B,
Ay [4x4] Aeie, Bl Aere, B, Arese) By Arese, B,
Az [4x4] Aseie] By Asere; B, Asesel By Aszeqe; B,

[Aeje] B] = [AE;B]]
A11 Kl A12/'(2 e A]_,,Kn

A21 Kl A221'(2 e A2nl<n
. . .| = [AK]

Anll'(l An2l<2 Ann}(n

13



(Al)llelTBl (A1)1191TBl
(Al)zlelTBl (A2)1162T51 =AnbB;
(A1)3le1TBl (A3)1193TB1
(Az)nezTBl (Al)zlelTBl
= | (A)xe, B >~ | (A)ae, Bi =AnB;
(A2)3192~TBl (A3)2163T31
(A3)1193T31 (A1)3161TBl
(A3)2163TB1 (A2)3192T31 = Az B,
L (A3)3193TBl L (A3)3193T31

14



Weaving with respect to M = J and

generalized tensor product

o M= Jyxn
@ Al,...,An: nXxXn
@ By,....B,: mxm

Then the weaving of (A1,...,Any) and (B, ..., B,) with
respect to M = J,», is

[AiE;iB)]
which coincides with the generalized tensor product
(Al, Ce ,Am) & (Bl, ce Bn) = [A,JBJ] where (Aij)hh = (Ah)ij

after appropriate row permutation

15
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Definition (weaving)
M: m x n (0, 1)-matrix.

Ri={jl1<j<n My=1}, r=IR]
pi: Ri — {1,..., r;} bijection,

A; : ri X rj matrix,

C:i:{i|1§i§mv Mijzl}a Cj:|Cj‘a
v+ G —{1,..., ¢} bijection,

B; : ¢j X ¢j matrix.

The weaving of (A1,...,An) and (By, ..., B,) with respect
to M is defined to be the m x n block matrix whose (i, )
block is the r; x ¢; matrix Wj; defined by

W.. = AiEPi(j)7’Yj(i)Bj if MU = 1'
gy — .
0 otherwise.




16

Definition (weaving)
M: m x n (0,1)-matrix. M = J

R={j|1<j<n My=1}, r=|R|=n,
pi: Ri — {1,...,r;} bijection,identity

A; o ri X rp matrix, n X n
q:{i|1§i§m7Mij:1}7 Cj:|Cj|:m7
v+ G —{1,..., ¢} bijection,identity

B; : ¢j X ¢j matrix. m x m




Definition (weaving)
M: m x n (0,1)-matrix. M = J

R,:{j|1§j§n,MU:1}, r,-:|R,-|:n,
pi: Ri — {1,...,r;} bijection,identity

A; i ri X ri matrix, n X n
q:{i|1§i§m7MU:1}7 Cj:|Cj|:m7
v+ G —{1,..., ¢} bijection,identity

Bj : ¢j x ¢j matrix. m x m

| A\

Proposition

The weaving of (Ai,...,Am) and (By,. .., B,) with respect to
J is the same as the generalized tensor product
(A1,...,An) ® (B, ..., B,) after row permutaiton.

A

16



The method of weaving

Proposition (Craigen, 1991)

M :m x n (0, 1)-matrix,
r; :row sum of M

A; :ri X r; matrix
:column sum of M

B; :c; x ¢; matrix

NN
IA A IAIA
IAIA IACIA

. .

2333

S




The method of weaving

Proposition (Craigen, 1991)

M :m x n (0, 1)-matrix,
r; :row sum of M

A; :ri X r; matrix
:column sum of M

B; :cj x ¢j matrix

Set N=>",rn=>1,¢

NN
IA A IAIA
IAIA IACIA

. .

2333

S




The method of weaving

Proposition (Craigen, 1991)

M :m x n (0, 1)-matrix,

r; :row sum of M (1<i<m),
A; :ri X r; matrix (1<i<m),
¢; :column sum of M (1<j<n),
B; :c; x ¢; matrix (1<j<n)

Set N=>_",ri=37,¢. The weaving of (Ay,...,An) and
(B, ..., B,) with respect to M is a weighing matrix W(N, ab)
provided




The method of weaving, example

M: 6 x 13 matrix with row sums

row sums 13,13, 10, 10, 10, 10,
A; :W(13,9), W(10,9),
column sums 6,6,6,6,6,6,6,4,4,4.4
B; :W(6,4), W(4,4)

Then the weaving gives W(66, 36).

18
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A; :W(13,9), W(10,9),
column sums 6,6,6,6,6,6,6,4,4,4.4
B; :W(6,4), W(4,4)
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@ Weaving in general cannot be expressed by generalized
tensor product.
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The method of weaving, example

M: 6 x 13 matrix with row sums

row sums 13,13, 10, 10, 10, 10,
A; :W(13,9), W(10,9),
column sums 6,6,6,6,6,6,6,4,4,4.4
B; :W(6,4), W(4,4)

Then the weaving gives W(66, 36).

@ Weaving in general cannot be expressed by generalized
tensor product.

@ Perhaps generalized tensor product is not general enough.

18



1101 3
M=1|1 0 1 0] 2
100 1] 2
3112
Bl B2 B3 B4

Bx3] [1x1 [1x1 [2x2]
A1 [3 X 3] Al EllBl A1 E2]_B2 O A1 E3lB4
A2 [2 X 2] A2 E1281 (0] A2 E21 B3 (0]
A3 [2 X 2] A3 E13Bl 0] 0] A3 E2284

10
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A1 [3 X 3]
Ay [2x2]
A3 [2 X 2]

X
A2E2lB3 = |:*

B:

[3 x 3]
Al Ell Bl
ArE1o By
AsE13By

W = ==

H OO
= O = O
N = O

B,
[1x1]
Al E21 B2
0
0

Bs
[1x 1]
(0]
ArE>1 B3
0]

o O O o

B,

[2 x 2]
A1Es1 By
0
AsExnB,

0

o= OO

0
0
0

0

*

0
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X
A2E2lB3 = |:*
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Al Ell Bl
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AsE13By

W = ==

H OO
= O = O
N = O

B,
[1x1]
Al E21 B2
0
0

Bs
[1x 1]
0
A2 E2lB3
0

o O O o

B,

[2 x 2]
A1Es1 By
0
AsExnB,

0

o= OO

0
0
0

0

*
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A1 [3 X 3]
Ay [2x2]
A3 [2 X 2]

X
A2E2lB3 = |:*

B:

[3 x 3]
Al Ell Bl
ArE1o By
AsE13By

W = ==

= O = O
N = O =

H OO

B,
[1x1]
Al E21 B2
0
0

Bs
[1x 1]
0
A2 E2lB3
0

o O O o

B,

[2 x 2]
A1Es1 By
0
AsExnB,

0

o= OO

0
0
0

0

*

0
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M: m x n (0, 1)-matrix.

Ri={jl1<j<n My=1}, r=|Ri,
pi: R — {1,...,r} bijection,

A; : ri X rj matrix,

G={ill<i<m My=1}, ¢=|C]
v G —{1,..., ¢} bijection,

B; : ¢j X ¢j matrix.
Define an r; x n matrix A; and an m x ¢; matrix B; by

(A = {(Af)h,p,.(k) if k € R,

otherwise,
(B = {

o

(Bj)‘/j(h)k if he Cj,
otherwise.

-

o
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Proposition

The weaving of (A1,...,An) and (B, ..., B,) with respect to
M coincides with the generalized tensor product (Nof
variable-order matrices) (Ay,...,An) ® (By,. .., B,) after
appropriate row permutation.
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Proposition

The weaving of (A1,...,An) and (B, ..., B,) with respect to
M coincides with the generalized tensor product (Nof
variable-order matrices) (Ay, ..., Am) ® (By,. .., B,) after
appropriate row permutation.

@ We may assume without loss of generality r; > --- > r,,.

@ The “diagonal” matrix Aj defined by (A;)nn = (Ap)j is
not a square matrix. It is an s; X m matrix, where
sy > -+ > s, is the conjugate partition of r; > -+ > rp,
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Proposition

The weaving of (A1,...,An) and (B, ..., B,) with respect to
M coincides with the generalized tensor product (of
variable-order matrices) (Ay,...,An) ® (By, ..., B,) after
appropriate row permutation.

@ We may assume without loss of generality r; > --- > r,,.

@ The “diagonal” matrix Aj defined by (A;)nn = (Ap)j is
not a square matrix. It is an s; X m matrix, where
sy > -+ > s, is the conjugate partition of r; > -+ > rp,

@ For example,
(r17 r, r3) = (37272) — (51752753) = (3737 1)

S1 S S3
r o 0O 4d
rn O O

r3 O O
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Proposition

H; :r; X n matrix, H,-H,-(_)T =al (1<i<m),

K; :m x ¢; matrix, KJ-KJ.(_)T =bl (1<j<n).

The generalized tensor product (of variable-order matrices)
T =(Hy,...,Hn) ® (K, ..., K,) satisfies TT()" = abl.
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Proposition

K; :m x ¢; matrix, KJ-KJ.(_)T =bl (1<j<n).

H; :r; X n matrix, H,-H,-(_)T =al (1<i<m),

The generalized tensor product (of variable-order matrices)
T =(Hy,...,Hn) ® (K, ..., K,) satisfies TT()" = abl.

The weighing matrix version and inverse-orthogonal matrix
version can be proved at the same time.
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Proposition

H; :ri X n matrix, H,-H,-(_)T =al (1<i<m),

K; :m x ¢; matrix, KJ-KJ.(_)T =bl (1<j<n).

The generalized tensor product (of variable-order matrices)
T =(Hy,...,Hn) ® (K, ..., K,) satisfies TT()" = abl.

The weighing matrix version and inverse-orthogonal matrix
version can be proved at the same time. For a complex
number x, we define

I
x) =% ff”éo' 0l=0
0 if x=0.



29

Proposition

H; :ri X n matrix, H,-H,-(_)T =al (1<i<m),

K; :m x ¢; matrix, KJ-KJ.(_)T =bl (1<j<n).

The generalized tensor product (of variable-order matrices)
T =(Hy,...,Hn) ® (K, ..., K,) satisfies TT()" = abl.

The weighing matrix version and inverse-orthogonal matrix
version can be proved at the same time. For a complex
number x, we define

-1 .
x) =% ff”éo' 0l=0
0 if x=0.

and define X(=) similarly for a matrix X.
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Proposition

H; :ri X n matrix, H,-H,-(_)T =al (1<i<m),

K; :m x ¢; matrix, KJ-KJ.(_)T =bl (1<j<n).

The generalized tensor product (of variable-order matrices)
T =(Hy,...,Hn) ® (K, ..., K,) satisfies TT()" = abl.

The weighing matrix version and inverse-orthogonal matrix
version can be proved at the same time. For a complex
number x, we define

_1 .
x) =% ff”éo' 0l=0
0 if x=0.

and define X(=) similarly for a matrix X.
Observe (ab)(™) = a(=)p(2) (Va, b € C).



Jones graph

23

@ H: n X n inverse-orthogonal matrix

o V={(ij)I1<ij<n i#j}

@ The Jones graph of ['(H) is the graph with vertex set V
and

. HinHip
(i) ~ (")) <= ZHhH/,,



Jones graph

@ H: n X n inverse-orthogonal matrix

o V={(ij)I1<ij<n i#j}

@ The Jones graph of ['(H) is the graph with vertex set V
and

. HinHip
(i) ~ (")) <= ZHhH/,,

Theorem (Hosoya—Suzuki)

H is a (nontrivial) generalized tensor product if and only if
['(H) has a connected component contained in S x S for some

SC{1,...,n}.
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Strong Kronecker product

Seberry and Zhang (1991) introduced strong Kronecker
product:

[My] o [Ng] = [Y_ Mix @ Nyg]

HoK=(Ho (oK)

(S He B> B K)

(Hi o H) @ (K1, Ka) = O He @ En) () B @ K))
h=1 j=1
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[Mjj] o [Nyl = [>_, M

(Hi, . Him) @ (Ki, o Ka) = (O He @ Em)(O_ B ® K))
h=1 Jj=1
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where (Aj)nn = (Hp)jj,
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[Mjj] o [Nyl = [>_, M

(Hi, . Him) @ (Ki, o Ka) = (O He @ Em)(O_ B ® K))
h=1 j=1
A - Ag| |K1
Ak | =] :
An1 ' A K”
where (Aj)nn = (Hp)jj,

A11 : A1n Kl

A,’j ® KJ = © e
DAp - A K,
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[Mjj] o [Nj] = [>_, Mix @ Ny

(Hi, . Him) @ (Ki, o Ka) = (O He @ Em)(O_ B ® K))
h=1 j=1

A -0 A K
AjiK; : :

An1 e Ann Kn

where (Aj;)nn = (Hp)j, is a principal submatrix of

A11 e Aln Kl

[ AI'J'@KJ' : : ..
An1 Ann Kn
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@ generalized tensor product (of fixed-order matrices) is a
principal submatrix of strong Kronecker product
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generalized tensor product (of fixed-order matrices) is a
principal submatrix of strong Kronecker product

generalized tensor product (of variable-order matrices)
contains weaving as a special case

weaving with respect to J is generalized tensor product

Ditd’'s construction is a special case of generalized tensor
product



