Generalized tensor products and related constructions

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

July 10, 2014
Workshop on Algebraic Design Theory
and Hadamard Matrices (ADTHM) 2014
In honor of the 70-th birthday of
Hadi Kharaghani
Unversity of Lethbridge

Outline

- Tensor product
- Diță's construction and generalized tensor product
- Weaving
- Generalized tensor product as weaving with respect to J
- Weaving as generalized tensor product of variable-order matrices
- Generalized tensor product as a principal submatrix of strong Kronecker product

Outline

- Tensor product
- Diţă's construction and generalized tensor product
- Weaving
- Generalized tensor product as weaving with respect to J
- Weaving as generalized tensor product of variable-order matrices
- Generalized tensor product as a principal submatrix of strong Kronecker product

References:

- R. Craigen, Ph.D Thesis (1991), JCD (1995)
- R. Hosoya and H. Suzuki, JACO (2003)
- J. Seberry and X.-M. Zhang, Australasian J. (1991)

• A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^{\top} = nI$.

- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^{\top} = nI$.
- A weighing matrix of order n and weight k (denoted W(n, k)) is an $n \times n$ matrix W with entries in $\{0, \pm 1\}$, satisfying $WW^{\top} = kI$.

- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^{\top} = nI$.
- A weighing matrix of order n and weight k (denoted W(n, k)) is an $n \times n$ matrix W with entries in $\{0, \pm 1\}$, satisfying $WW^{\top} = kI$.
- A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{\xi \in \mathbb{C} \mid |\xi| = 1\}$, satisfying $HH^* = nI$, where * means the conjugate transpose.

- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^{\top} = nI$.
- A weighing matrix of order n and weight k (denoted W(n, k)) is an $n \times n$ matrix W with entries in $\{0, \pm 1\}$, satisfying $WW^{\top} = kI$.
- A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{\xi \in \mathbb{C} \mid |\xi| = 1\}$, satisfying $HH^* = nI$, where * means the conjugate transpose.
- A type II (or inverse-orthogonal) matrix of order n is an $n \times n$ matrix H with nonzero complex entries, satisfying $HH^{(-)^{\top}} = nI$, where (-) means the entrywise inverse.

The tensor (Kronecker) product of two matrices H and K is

$$H \otimes K = \begin{bmatrix} H_{11}K & H_{12}K & \cdots & H_{1n}K \\ \vdots & \vdots & & \vdots \\ H_{i1}K & H_{i2}K & \cdots & H_{in}K \\ \vdots & \vdots & & \vdots \\ H_{j1}K & H_{j2}K & \cdots & H_{jn}K \\ \vdots & \vdots & & \vdots \\ H_{n1}K & H_{n2}K & \cdots & H_{nn}K \end{bmatrix}$$

Proposition

If H and K are Hadamard matrices of order n and m, respectively, then $H \otimes K$ is a Hadamard matrix of order nm.

The tensor (Kronecker) product of two matrices H and K is

$$H \otimes K = \begin{bmatrix} H_{11}K & H_{12}K & \cdots & H_{1n}K \\ \vdots & \vdots & & \vdots \\ H_{i1}K & H_{i2}K & \cdots & H_{in}K \\ \vdots & \vdots & & \vdots \\ H_{j1}K & H_{j2}K & \cdots & H_{jn}K \\ \vdots & \vdots & & \vdots \\ H_{n1}K & H_{n2}K & \cdots & H_{nn}K \end{bmatrix}$$

Proof.

$$H_{i1}KK^{T}H_{j1} + H_{i2}KK^{T}H_{j2} + \cdots$$

= $(H_{i1}H_{j1} + H_{i2}H_{j2} + \cdots)mI$
= $(HH^{T})_{ij}mI$
= $\delta_{ii}nmI$.

$$H \otimes K = \begin{bmatrix} H_{11}K & H_{12}K & \cdots & H_{1n}K \\ H_{21}K & H_{22}K & \cdots & H_{2n}K \\ \vdots & \vdots & & \vdots \\ H_{n1}K & H_{n2}K & \cdots & H_{nn}K \end{bmatrix}$$

Proof.

$$H_{i1}KK^{T}H_{j1} + H_{i2}KK^{T}H_{j2} + \cdots$$

= $(H_{i1}H_{j1} + H_{i2}H_{j2} + \cdots)mI$
= $(HH^{T})_{ij}mI$
= $\delta_{ii}mnI$.

$$H \otimes K = \begin{bmatrix} H_{11}K & H_{12}K & \cdots & H_{1n}K \\ H_{21}K & H_{22}K & \cdots & H_{2n}K \\ \vdots & \vdots & & \vdots \\ H_{n1}K & H_{n2}K & \cdots & H_{nn}K \end{bmatrix}$$

Proof.

$$H_{i1}KK^{T}H_{j1} + H_{i2}KK^{T}H_{j2} + \cdots$$

= $(H_{i1}H_{j1} + H_{i2}H_{j2} + \cdots)ml$
= $(HH^{T})_{ij}ml$
= $\delta_{ii}mnl$.

_

$$\begin{bmatrix} H_{11}K_1 & H_{12}K_2 & \cdots & H_{1n}K_n \\ H_{21}K_1 & H_{22}K_2 & \cdots & H_{2n}K_n \\ \vdots & \vdots & & \vdots \\ H_{n1}K_1 & H_{n2}K_2 & \cdots & H_{nn}K_n \end{bmatrix}$$

Proof.

$$H_{i1}K_{1}K_{1}^{T}H_{j1} + H_{i2}K_{2}K_{2}^{T}H_{j2} + \cdots$$

= $(H_{i1}H_{j1} + H_{i2}H_{j2} + \cdots)ml$
= $(HH^{T})_{ij}ml$
= $\delta_{ij}mnl$.

If H is a Hadamard matrix of order n, and K_1, \ldots, K_n are Hadamard matrices of order m, then

$$H \otimes (K_1, \dots, K_n) = \begin{bmatrix} H_{11}K_1 & H_{12}K_2 & \cdots & H_{1n}K_n \\ H_{21}K_1 & H_{22}K_2 & \cdots & H_{2n}K_n \\ \vdots & \vdots & & \vdots \\ H_{n1}K_1 & H_{n2}K_2 & \cdots & H_{nn}K_n \end{bmatrix}$$

is a Hadamard matrix of order nm.

If H is a Hadamard matrix of order n, and K_1, \ldots, K_n are Hadamard matrices of order m, then

$$H \otimes (K_1, \dots, K_n) = \begin{bmatrix} H_{11}K_1 & H_{12}K_2 & \cdots & H_{1n}K_n \\ H_{21}K_1 & H_{22}K_2 & \cdots & H_{2n}K_n \\ \vdots & \vdots & & \vdots \\ H_{n1}K_1 & H_{n2}K_2 & \cdots & H_{nn}K_n \end{bmatrix}$$

is a Hadamard matrix of order nm.

If H is a complex Hadamard matrix of order n, and K_1, \ldots, K_n are complex Hadamard matrices of order m, then

$$H \otimes (K_1, \dots, K_n) = \begin{bmatrix} H_{11}K_1 & H_{12}K_2 & \cdots & H_{1n}K_n \\ H_{21}K_1 & H_{22}K_2 & \cdots & H_{2n}K_n \\ \vdots & \vdots & & \vdots \\ H_{n1}K_1 & H_{n2}K_2 & \cdots & H_{nn}K_n \end{bmatrix}$$

is a complex Hadamard matrix of order nm.

If H is an inverse-orthogonal matrix of order n, and K_1, \ldots, K_n are inverse-orthogonal matrices of order m, then

$$H \otimes (K_1, \dots, K_n) = \begin{bmatrix} H_{11}K_1 & H_{12}K_2 & \cdots & H_{1n}K_n \\ H_{21}K_1 & H_{22}K_2 & \cdots & H_{2n}K_n \\ \vdots & \vdots & & \vdots \\ H_{n1}K_1 & H_{n2}K_2 & \cdots & H_{nn}K_n \end{bmatrix}$$

is an inverse-orthogonal matrix of order nm.

If H is an inverse-orthogonal matrix of order n, and K_1, \ldots, K_n are inverse-orthogonal matrices of order m, then

$$H \otimes (K_1, \dots, K_n) = \begin{bmatrix} H_{11}K_1 & H_{12}K_2 & \cdots & H_{1n}K_n \\ H_{21}K_1 & H_{22}K_2 & \cdots & H_{2n}K_n \\ \vdots & \vdots & & \vdots \\ H_{n1}K_1 & H_{n2}K_2 & \cdots & H_{nn}K_n \end{bmatrix}$$

is an inverse-orthogonal matrix of order nm.

Not only K but also H can be replaced by H_1, \ldots, H_m .

Definition (generalized tensor product)

$$H_1, \ldots, H_m$$
: matrices of order n , K_1, \ldots, K_n : matrices of order m .

Let Δ_{ij} be the diagonal matrix defined by

$$(\Delta_{ij})_{hh} = (H_h)_{ij} \quad (1 \leq i, j \leq m, \ 1 \leq h \leq n)$$

The generalized tensor product is

$$(H_1, \ldots, H_m) \otimes (K_1, \ldots, K_n)$$

$$= \begin{bmatrix} \Delta_{11}K_1 & \Delta_{12}K_2 & \cdots & \Delta_{1n}K_n \\ \Delta_{21}K_1 & \Delta_{22}K_2 & \cdots & \Delta_{2n}K_n \\ \vdots & \vdots & & \vdots \\ \Delta_{n1}K_1 & \Delta_{n2}K_2 & \cdots & \Delta_{nn}K_n \end{bmatrix}$$

Proposition (Hosoya and Suzuki, 2003)

$$H_1, \ldots, H_m$$
: matrices of order n , K_1, \ldots, K_n : matrices of order m , $(\Delta_{ij})_{hh} = (H_h)_{ij} \quad (1 \le i, j \le m, \ 1 \le h \le n)$

Then the generalized tensor product

$$(H_1, \dots, H_m) \otimes (K_1, \dots, K_n)$$

$$= \begin{bmatrix} \Delta_{11}K_1 & \Delta_{12}K_2 & \cdots & \Delta_{1n}K_n \\ \Delta_{21}K_1 & \Delta_{22}K_2 & \cdots & \Delta_{2n}K_n \\ \vdots & \vdots & & \vdots \\ \Delta_{n1}K_1 & \Delta_{n2}K_2 & \cdots & \Delta_{nn}K_n \end{bmatrix}$$

is an inverse-orthogonal matrix of order mn if and only if $H_1, \ldots, H_m, K_1, \ldots, K_n$ are inverse-orthogonal matrices.

The method of weaving

```
M: m \times n \ (0,1)-matrix,

r_i: \text{row sum of } M \qquad \qquad (1 \leq i \leq m),

A_i: r_i \times r_i \text{ matrix} \qquad \qquad (1 \leq i \leq m),

c_j: \text{column sum of } M \qquad \qquad (1 \leq j \leq n),

B_i: c_i \times c_j \text{ matrix} \qquad \qquad (1 \leq j \leq n)
```

g

The method of weaving

$$M: m \times n \ (0,1)$$
-matrix,
 $r_i: \text{row sum of } M \qquad \qquad (1 \leq i \leq m),$
 $A_i: r_i \times r_i \text{ matrix} \qquad \qquad (1 \leq i \leq m),$
 $c_j: \text{column sum of } M \qquad \qquad (1 \leq j \leq n),$
 $B_i: c_i \times c_i \text{ matrix} \qquad \qquad (1 \leq j \leq n)$

Set

$$N = \sum_{i=1}^m r_i = \sum_{j=1}^n c_j.$$

a

The method of weaving

$$M: m \times n \ (0, 1)$$
-matrix,
 $r_i:$ row sum of M $(1 \le i \le m)$,
 $A_i: r_i \times r_i$ matrix $(1 \le i \le m)$,
 $c_j:$ column sum of M $(1 \le j \le n)$,
 $B_j: c_j \times c_j$ matrix $(1 \le j \le n)$

Set

$$N = \sum_{i=1}^m r_i = \sum_{i=1}^n c_i.$$

The method of weaving gives a weighing matrix W(N, ab) provided

$$A_i: W(r_i, a)$$
 $(1 \le i \le m),$ $B_j: W(c_j, b)$ $(1 \le j \le n).$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \frac{3}{2}$$

$$3 \quad 1 \quad 1 \quad 2$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} \mathbf{3} \\ \mathbf{2} \\ \mathbf{2} \\ \mathbf{3} & 1 & 1 & 2 \end{array}$$

 A_1 [3 × 3]

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{ccc} 3 \\ 2 \\ \end{array}$$

$$\begin{array}{cccc} 3 & 1 & 1 & 2 \end{array}$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{ccc} 3 \\ 2 \\ 3 & 1 & 1 & 2 \end{array}$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{ccc} 3 \\ 2 \\ 3 & 1 & 1 & 2 \end{array}$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{ccc} 3 \\ 2 \\ 3 & 1 & 1 & 2 \end{array}$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} 3 \\ 2 \\ 2 \\ 3 & 1 & 1 & 2 \end{array}$$

$$A_i: r_i \times r_i, \ B_j: c_j \times c_j \longrightarrow r_i \times c_j \ \text{matrix}$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} 3 \\ 2 \\ 2 \end{array}$$

$$A_i: r_i \times r_i, \ B_j: c_j \times c_j \longrightarrow r_i \times c_j \ \text{matrix}$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} 3 \\ 2 \\ 2 \\ 3 & 1 & 1 & 2 \end{array}$$

$$A_i: r_i \times r_i, \ B_j: c_j \times c_j \longrightarrow r_i \times c_j \ \text{matrix}$$

$$A_1: 3 \times 3, \ B_4: 2 \times 2 \longrightarrow 3 \times 2 \ \text{matrix} \ (A_1 \mathbf{e}_3)(\mathbf{e}_1^{\top} B_4)$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} 3 \\ 2 \\ 3 & 1 & 1 & 2 \end{array}$$

$$B_{1} B_{2} B_{3} B_{4}$$

$$[3 \times 3] [3 \times 3] [3 \times 3] [3 \times 3] [3 \times 3]$$

$$A_{1} [4 \times 4] A_{1}\mathbf{e}_{1}\mathbf{e}_{1}^{\top}B_{1} A_{1}\mathbf{e}_{2}\mathbf{e}_{1}^{\top}B_{2} A_{1}\mathbf{e}_{3}\mathbf{e}_{1}^{\top}B_{3} A_{1}\mathbf{e}_{4}\mathbf{e}_{1}^{\top}B_{4}$$

$$A_{2} [4 \times 4] A_{2}\mathbf{e}_{1}\mathbf{e}_{2}^{\top}B_{1} A_{2}\mathbf{e}_{2}\mathbf{e}_{2}^{\top}B_{2} A_{2}\mathbf{e}_{3}\mathbf{e}_{2}^{\top}B_{3} A_{2}\mathbf{e}_{4}\mathbf{e}_{2}^{\top}B_{4}$$

$$A_{3} [4 \times 4] A_{3}\mathbf{e}_{1}\mathbf{e}_{3}^{\top}B_{1} A_{3}\mathbf{e}_{2}\mathbf{e}_{3}^{\top}B_{2} A_{3}\mathbf{e}_{3}\mathbf{e}_{3}^{\top}B_{3} A_{3}\mathbf{e}_{4}\mathbf{e}_{3}^{\top}B_{4}$$

$$[A_{i}\mathbf{e}_{j}\mathbf{e}_{i}^{\top}B_{j}] = [A_{i}E_{ji}B_{j}]$$

Weaving with respect to M = J

Weaving with respect to M = J

$(\Delta_{ij})_{hh}=(A_h)_{ij}$

$$\begin{bmatrix} A_1 \mathbf{e}_1 \mathbf{e}_1^\top B_1 & \cdots \\ A_2 \mathbf{e}_1 \mathbf{e}_2^\top B_1 & \cdots \\ A_3 \mathbf{e}_1 \mathbf{e}_3^\top B_1 & \cdots \end{bmatrix}$$

$$= \begin{bmatrix} (A_1)_{11}\mathbf{e}_1^{\top}B_1 & \cdots \\ (A_1)_{21}\mathbf{e}_1^{\top}B_1 & \cdots \\ (A_1)_{31}\mathbf{e}_1^{\top}B_1 & \cdots \\ (A_2)_{11}\mathbf{e}_2^{\top}B_1 & \cdots \\ (A_2)_{21}\mathbf{e}_2^{\top}B_1 & \cdots \\ (A_2)_{21}\mathbf{e}_2^{\top}B_1 & \cdots \\ (A_3)_{31}\mathbf{e}_3^{\top}B_1 & \cdots \\ (A_3)_{21}\mathbf{e}_3^{\top}B_1 & \cdots \\ (A_3)_{21}\mathbf{e}_3^{\top}B_1 & \cdots \\ (A_3)_{21}\mathbf{e}_3^{\top}B_1 & \cdots \\ (A_3)_{31}\mathbf{e}_3^{\top}B_1 & \cdots \\$$

Weaving with respect to M = J and generalized tensor product

- \bullet $M = J_{m \times n}$
- A_1, \ldots, A_m : $n \times n$
- B_1, \ldots, B_n : $m \times m$

Then the weaving of (A_1, \ldots, A_m) and (B_1, \ldots, B_n) with respect to $M = J_{m \times n}$ is

$$[A_i E_{ji} B_j]$$

which coincides with the generalized tensor product

$$(A_1,\ldots,A_m)\otimes (B_1,\ldots,B_n)=[\Delta_{ij}B_j]\quad \text{where } (\Delta_{ij})_{hh}=(A_h)_{ij}$$

after appropriate row permutation

Definition (weaving)

 $M: m \times n \ (0,1)$ -matrix.

$$R_i = \{j \mid 1 \leq j \leq n, \ M_{ij} = 1\}, \quad r_i = |R_i|,$$
 $\rho_i : R_i \rightarrow \{1, \dots, r_i\} \text{ bijection,}$
 $A_i : r_i \times r_i \text{ matrix,}$
 $C_j = \{i \mid 1 \leq i \leq m, \ M_{ij} = 1\}, \quad c_j = |C_j|,$
 $\gamma_j : C_j \rightarrow \{1, \dots, c_j\} \text{ bijection,}$
 $B_i : c_i \times c_i \text{ matrix.}$

The weaving of (A_1, \ldots, A_m) and (B_1, \ldots, B_n) with respect to M is defined to be the $m \times n$ block matrix whose (i, j) block is the $r_i \times c_j$ matrix W_{ij} defined by

$$W_{ij} = \begin{cases} A_i E_{\rho_i(j), \gamma_j(i)} B_j & \text{if } M_{ij} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Definition (weaving)

$$M: m \times n \ (0,1)$$
-matrix. $M = J$

$$R_i = \{j \mid 1 \leq j \leq n, \ M_{ij} = 1\}, \quad r_i = |R_i| = n,$$
 $\rho_i : R_i \rightarrow \{1, \dots, r_i\}$ bijection, identity
 $A_i : r_i \times r_i \text{ matrix}, \ n \times n$
 $C_j = \{i \mid 1 \leq i \leq m, \ M_{ij} = 1\}, \quad c_j = |C_j| = m,$
 $\gamma_j : C_j \rightarrow \{1, \dots, c_j\}$ bijection, identity
 $B_i : c_i \times c_i \text{ matrix}. \ m \times m$

Definition (weaving)

$$M: m \times n \ (0,1)$$
-matrix. $M = J$

$$R_i = \{j \mid 1 \leq j \leq n, \ M_{ij} = 1\}, \quad r_i = |R_i| = n,$$

$$\rho_i: R_i \rightarrow \{1, \dots, r_i\} \ \text{bijection}, identity$$

$$A_i: r_i \times r_i \ \text{matrix}, \ n \times n$$

$$C_j = \{i \mid 1 \leq i \leq m, \ M_{ij} = 1\}, \quad c_j = |C_j| = m,$$

$$\gamma_j: C_j \rightarrow \{1, \dots, c_j\} \ \text{bijection}, identity$$

$$B_i: c_i \times c_i \ \text{matrix}. \ m \times m$$

Proposition

The weaving of (A_1, \ldots, A_m) and (B_1, \ldots, B_n) with respect to J is the same as the generalized tensor product $(A_1, \ldots, A_m) \otimes (B_1, \ldots, B_n)$ after row permutaiton.

The method of weaving

Proposition (Craigen, 1991)

```
M: m \times n \ (0,1)-matrix,

r_i: \text{row sum of } M \qquad \qquad (1 \leq i \leq m),

A_i: r_i \times r_i \text{ matrix} \qquad \qquad (1 \leq i \leq m),

c_j: \text{column sum of } M \qquad \qquad (1 \leq j \leq n),

B_i: c_i \times c_i \text{ matrix} \qquad \qquad (1 \leq j \leq n)
```

The method of weaving

Proposition (Craigen, 1991)

```
M: m \times n \ (0,1)-matrix,

r_i: \text{row sum of } M \qquad \qquad (1 \leq i \leq m),

A_i: r_i \times r_i \text{ matrix} \qquad \qquad (1 \leq i \leq m),

c_j: \text{column sum of } M \qquad \qquad (1 \leq j \leq n),

B_i: c_i \times c_i \text{ matrix} \qquad \qquad (1 \leq j \leq n)
```

Set $N = \sum_{i=1}^m r_i = \sum_{j=1}^n c_j$.

The method of weaving

Proposition (Craigen, 1991)

```
M: m \times n \ (0,1)-matrix,

r_i: \text{row sum of } M \qquad \qquad (1 \leq i \leq m),

A_i: r_i \times r_i \text{ matrix} \qquad \qquad (1 \leq i \leq m),

c_j: \text{column sum of } M \qquad \qquad (1 \leq j \leq n),

B_j: c_j \times c_j \text{ matrix} \qquad \qquad (1 \leq j \leq n)
```

Set $N = \sum_{i=1}^{m} r_i = \sum_{j=1}^{n} c_j$. The weaving of (A_1, \ldots, A_m) and (B_1, \ldots, B_n) with respect to M is a weighing matrix W(N, ab) provided

$$A_i:W(r_i,a)$$
 $(1 \le i \le m),$
 $B_j:W(c_j,b)$ $(1 \le j \le n).$

The method of weaving, example

M: 6×13 matrix with row sums

row sums
$$13, 13, 10, 10, 10, 10,$$

$$A_i : W(13, 9), W(10, 9),$$
column sums $6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4$

$$B_j : W(6, 4), W(4, 4)$$

Then the weaving gives W(66, 36).

The method of weaving, example

M: 6×13 matrix with row sums

row sums
$$13, 13, 10, 10, 10, 10,$$

$$A_i : W(13, 9), W(10, 9),$$
column sums $6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4$

$$B_j : W(6, 4), W(4, 4)$$

Then the weaving gives W(66, 36).

 Weaving in general cannot be expressed by generalized tensor product.

The method of weaving, example

 $M: 6 \times 13$ matrix with row sums

row sums
$$13, 13, 10, 10, 10, 10,$$

$$A_i : W(13, 9), W(10, 9),$$
column sums $6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4$

$$B_j : W(6, 4), W(4, 4)$$

Then the weaving gives W(66, 36).

- Weaving in general cannot be expressed by generalized tensor product.
- Perhaps generalized tensor product is not general enough.

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} 3 \\ 2 \\ 2 \end{array}$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} 3 \\ 2 \\ 2 \end{array}$$

$$A_{2}E_{21}B_{3} = \begin{bmatrix} * & * \\ * & * \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} [*] = \begin{bmatrix} * & 0 & * & 0 \\ * & 0 & * & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ * \\ 0 \end{bmatrix}$$
$$= \tilde{A}_{2}E_{32}\tilde{B}_{3}.$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{ccc} 3 \\ 2 \\ 2 \end{array}$$

$$A_{2}E_{21}B_{3} = \begin{bmatrix} * & * \\ * & * \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} [*] = \begin{bmatrix} * & 0 & * & 0 \\ * & 0 & * & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ * \\ 0 \end{bmatrix}$$
$$= \tilde{A}_{2}E_{32}\tilde{B}_{3}.$$

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{ccc} 3 \\ 2 \\ 2 \end{array}$$

$$A_{2}E_{21}B_{3} = \begin{bmatrix} * & * \\ * & * \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} [*] = \begin{bmatrix} * & 0 & * & 0 \\ * & 0 & * & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ * \\ \mathbf{0} \end{bmatrix}$$
$$= \tilde{A}_{2}E_{32}\tilde{B}_{3}.$$

 $M: m \times n \ (0,1)$ -matrix.

$$egin{aligned} R_i &= \{j \mid 1 \leq j \leq n, \; M_{ij} = 1\}, \quad r_i = |R_i|, \ &
ho_i : R_i
ightarrow \{1, \ldots, r_i\} \; \text{bijection,} \ & A_i : r_i imes r_i \; \text{matrix,} \ & C_j &= \{i \mid 1 \leq i \leq m, \; M_{ij} = 1\}, \quad c_j = |C_j|, \ & \gamma_j : C_j
ightarrow \{1, \ldots, c_j\} \; \text{bijection,} \ & B_j : c_j imes c_j \; \text{matrix.} \end{aligned}$$

Define an $r_i \times n$ matrix \tilde{A}_i and an $m \times c_j$ matrix \tilde{B}_j by

$$(\tilde{A}_i)_{hk} = \begin{cases} (A_i)_{h,\rho_i(k)} & \text{if } k \in R_i, \\ 0 & \text{otherwise,} \end{cases}$$

$$(\tilde{B}_j)_{hk} = \begin{cases} (B_j)_{\gamma_j(h),k} & \text{if } h \in C_j, \\ 0 & \text{otherwise.} \end{cases}$$

The weaving of (A_1, \ldots, A_m) and (B_1, \ldots, B_n) with respect to M coincides with the generalized tensor product (of variable-order matrices) $(\tilde{A}_1, \ldots, \tilde{A}_m) \otimes (\tilde{B}_1, \ldots, \tilde{B}_n)$ after appropriate row permutation.

The weaving of (A_1, \ldots, A_m) and (B_1, \ldots, B_n) with respect to M coincides with the generalized tensor product (of variable-order matrices) $(\tilde{A}_1, \ldots, \tilde{A}_m) \otimes (\tilde{B}_1, \ldots, \tilde{B}_n)$ after appropriate row permutation.

- We may assume without loss of generality $r_1 \geq \cdots \geq r_m$.
- The "diagonal" matrix Δ_{ij} defined by $(\Delta_{ij})_{hh} = (A_h)_{ij}$ is not a square matrix. It is an $s_i \times m$ matrix, where $s_1 \geq \cdots \geq s_{r_1}$ is the conjugate partition of $r_1 \geq \cdots \geq r_m$

The weaving of (A_1, \ldots, A_m) and (B_1, \ldots, B_n) with respect to M coincides with the generalized tensor product (of variable-order matrices) $(\tilde{A}_1, \ldots, \tilde{A}_m) \otimes (\tilde{B}_1, \ldots, \tilde{B}_n)$ after appropriate row permutation.

- We may assume without loss of generality $r_1 \ge \cdots \ge r_m$.
- The "diagonal" matrix Δ_{ij} defined by $(\Delta_{ij})_{hh} = (A_h)_{ij}$ is not a square matrix. It is an $s_i \times m$ matrix, where $s_1 \geq \cdots \geq s_{r_1}$ is the conjugate partition of $r_1 \geq \cdots \geq r_m$
- For example, $(r_1, r_2, r_3) = (3, 2, 2) \implies (s_1, s_2, s_3) = (3, 3, 1).$

$$H_i: r_i \times n \text{ matrix, } H_i H_i^{(-)^{\top}} = aI \quad (1 \leq i \leq m),$$
 $K_j: m \times c_j \text{ matrix, } K_j K_j^{(-)^{\top}} = bI \quad (1 \leq j \leq n).$

The generalized tensor product (of variable-order matrices) $T = (H_1, \ldots, H_m) \otimes (K_1, \ldots, K_n)$ satisfies $TT^{(-)^{\top}} = abI$.

$$H_i: r_i \times n \text{ matrix, } H_i H_i^{(-)^{\top}} = aI \quad (1 \leq i \leq m),$$
 $K_j: m \times c_j \text{ matrix, } K_j K_j^{(-)^{\top}} = bI \quad (1 \leq j \leq n).$

The generalized tensor product (of variable-order matrices) $T = (H_1, \ldots, H_m) \otimes (K_1, \ldots, K_n)$ satisfies $TT^{(-)^{\top}} = abI$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time.

$$H_i: r_i \times n \text{ matrix, } H_i H_i^{(-)^\top} = aI \quad (1 \leq i \leq m),$$

 $K_j: m \times c_j \text{ matrix, } K_j K_j^{(-)^\top} = bI \quad (1 \leq j \leq n).$

The generalized tensor product (of variable-order matrices) $T = (H_1, \ldots, H_m) \otimes (K_1, \ldots, K_n)$ satisfies $TT^{(-)^{\top}} = abI$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time. For a complex number x, we define

$$x^{(-)} = \begin{cases} x^{-1} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$
 $0^{-1} = 0$

$$H_i: r_i \times n \text{ matrix, } H_i H_i^{(-)^{\top}} = al \quad (1 \leq i \leq m),$$
 $K_j: m \times c_j \text{ matrix, } K_j K_j^{(-)^{\top}} = bl \quad (1 \leq j \leq n).$

The generalized tensor product (of variable-order matrices) $T = (H_1, \ldots, H_m) \otimes (K_1, \ldots, K_n)$ satisfies $TT^{(-)^{\top}} = abI$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time. For a complex number x, we define

$$x^{(-)} = \begin{cases} x^{-1} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$
 $0^{-1} = 0$

and define $X^{(-)}$ similarly for a matrix X.

$$H_i: r_i imes n ext{ matrix, } H_i H_i^{(-)^{\perp}} = aI \quad (1 \leq i \leq m),$$
 $K_j: m imes c_j ext{ matrix, } K_j K_j^{(-)^{\perp}} = bI \quad (1 \leq j \leq n).$

The generalized tensor product (of variable-order matrices) $T = (H_1, \ldots, H_m) \otimes (K_1, \ldots, K_n)$ satisfies $TT^{(-)^{\top}} = abI$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time. For a complex number x, we define

$$x^{(-)} = \begin{cases} x^{-1} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases} \quad 0^{-1} = 0$$

and define $X^{(-)}$ similarly for a matrix X. Observe $(ab)^{(-)} = a^{(-)}b^{(-)}$ $(\forall a, b \in \mathbb{C})$.

Jones graph

- $H: n \times n$ inverse-orthogonal matrix
- $V = \{(i,j) \mid 1 \le i, j \le n, i \ne j\}$
- The Jones graph of $\Gamma(H)$ is the graph with vertex set V and

$$(i,j) \sim (i',j') \iff \sum_{h=1}^{n} \frac{H_{ih}H_{i'h}}{H_{jh}H_{j'h}} \neq 0.$$

Jones graph

- $H: n \times n$ inverse-orthogonal matrix
- $V = \{(i,j) \mid 1 \le i, j \le n, i \ne j\}$
- The Jones graph of $\Gamma(H)$ is the graph with vertex set V and

$$(i,j) \sim (i',j') \iff \sum_{h=1}^n \frac{H_{ih}H_{i'h}}{H_{jh}H_{j'h}} \neq 0.$$

Theorem (Hosoya-Suzuki)

H is a (nontrivial) generalized tensor product if and only if $\Gamma(H)$ has a connected component contained in $S \times S$ for some $S \subsetneq \{1, \ldots, n\}$.

Seberry and Zhang (1991) introduced strong Kronecker product:

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$H \otimes K =$$

Seberry and Zhang (1991) introduced strong Kronecker product:

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$H \otimes K = (H \otimes I)(I \otimes K)$$

Seberry and Zhang (1991) introduced strong Kronecker product:

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$H \otimes K = (H \otimes I)(I \otimes K)$$
$$= (H \otimes \sum_{h=1}^{m} E_{hh})(\sum_{j=1}^{n} E_{jj} \otimes K)$$

Seberry and Zhang (1991) introduced strong Kronecker product:

$$[M_{ij}] \circ [N_{ij}] = [\sum_{k} M_{ik} \otimes N_{kj}]$$

$$H \otimes K = (H \otimes I)(I \otimes K)$$
$$= (\sum_{h=1}^{m} H \otimes E_{hh})(\sum_{j=1}^{n} E_{jj} \otimes K)$$

Seberry and Zhang (1991) introduced strong Kronecker product:

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$H \otimes K = (H \otimes I)(I \otimes K)$$

$$= (\sum_{h=1}^{m} H \otimes E_{hh})(\sum_{j=1}^{n} E_{jj} \otimes K)$$

$$= (\sum_{h=1}^{m} H_{h} \otimes E_{hh})(\sum_{j=1}^{n} E_{jj} \otimes K_{j})$$

Seberry and Zhang (1991) introduced strong Kronecker product:

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$H \otimes K = (H \otimes I)(I \otimes K)$$
$$= (\sum_{h=1}^{m} H \otimes E_{hh})(\sum_{j=1}^{n} E_{jj} \otimes K)$$

$$(H_1,\ldots,H_m)\otimes (K_1,\ldots,K_n)=(\sum_{h=1}^m H_h\otimes E_{hh})(\sum_{j=1}^m E_{jj}\otimes K_j)$$

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$(H_1,\ldots,H_m)\otimes (K_1,\ldots,K_n)=(\sum_{h=1}^m H_h\otimes E_{hh})(\sum_{j=1}^m E_{jj}\otimes K_j)$$

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$(H_1,\ldots,H_m)\otimes (K_1,\ldots,K_n)=(\sum_{h=1}^m H_h\otimes E_{hh})(\sum_{j=1}^n E_{jj}\otimes K_j)$$

$$\begin{bmatrix} K_1 & & & \\ & \ddots & & \\ & & K_n \end{bmatrix}$$

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

$$(H_1,\ldots,H_m)\otimes (K_1,\ldots,K_n)=(\sum_{h=1}^m H_h\otimes E_{hh})(\sum_{j=1}^n E_{jj}\otimes K_j)$$

$$\begin{bmatrix} \Delta_{11} & \cdots & \Delta_{1n} \\ \vdots & & \vdots \\ \Delta_{n1} & \cdots & \Delta_{nn} \end{bmatrix} \begin{bmatrix} K_1 & & & \\ & \ddots & & \\ & & K_n \end{bmatrix}$$

where
$$(\Delta_{ij})_{hh} = (H_h)_{ij}$$
,

$$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$$

where $(\Delta_{ii})_{hh} = (H_h)_{ii}$,

$$(H_1, \ldots, H_m) \otimes (K_1, \ldots, K_n) = (\sum_{h=1}^m H_h \otimes E_{hh})(\sum_{j=1}^n E_{jj} \otimes K_j)$$

$$\begin{bmatrix} \Delta_{ij} K_j \end{bmatrix} = \begin{bmatrix} \Delta_{11} & \cdots & \Delta_{1n} \\ \vdots & & \vdots \\ \Delta_{n1} & \cdots & \Delta_{nn} \end{bmatrix} \begin{bmatrix} K_1 & & & \\ & \ddots & & \\ & & K_n \end{bmatrix}$$

$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$

$$(H_1,\ldots,H_m)\otimes (K_1,\ldots,K_n)=(\sum_{h=1}^m H_h\otimes E_{hh})(\sum_{j=1}^n E_{jj}\otimes K_j)$$

$$\left[egin{array}{c} \Delta_{ij} \mathcal{K}_j \end{array}
ight] = \left[egin{array}{cccc} \Delta_{11} & \cdots & \Delta_{1n} \ dots & & dots \ \Delta_{n1} & \cdots & \Delta_{nn} \end{array}
ight] \left[egin{array}{cccc} \mathcal{K}_1 & & & & \ & \ddots & & \ & & \mathcal{K}_n \end{array}
ight]$$

where $(\Delta_{ij})_{hh} = (H_h)_{ij}$,

$$\begin{bmatrix} \Delta_{11} & \cdots & \Delta_{1n} \\ \vdots & & \vdots \\ \Delta_{n1} & \cdots & \Delta_{nn} \end{bmatrix} \circ \begin{bmatrix} K_1 & & & \\ & \ddots & & \\ & & K_n \end{bmatrix}$$

$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$

$$(H_1,\ldots,H_m)\otimes (K_1,\ldots,K_n)=(\sum_{h=1}^m H_h\otimes E_{hh})(\sum_{j=1}^n E_{jj}\otimes K_j)$$

$$\left[egin{array}{c} \Delta_{ij} \mathcal{K}_j \end{array}
ight] = \left[egin{array}{cccc} \Delta_{11} & \cdots & \Delta_{1n} \ dots & & dots \ \Delta_{n1} & \cdots & \Delta_{nn} \end{array}
ight] \left[egin{array}{cccc} \mathcal{K}_1 & & & & \ & \ddots & & \ & & \mathcal{K}_n \end{array}
ight]$$

where $(\Delta_{ij})_{hh} = (H_h)_{ij}$,

$$\left[egin{array}{ccc} \Delta_{ij}\otimes \mathcal{K}_{j} \end{array}
ight] = \left[egin{array}{ccc} \Delta_{11} & \cdots & \Delta_{1n} \ dots & & dots \ \Delta_{n1} & \cdots & \Delta_{nn} \end{array}
ight] oldsymbol{\circ} \left[egin{array}{ccc} \mathcal{K}_{1} & & & \ & \ddots & \ & & \mathcal{K}_{n} \end{array}
ight]$$

$[M_{ij}] \circ [N_{ij}] = [\sum_k M_{ik} \otimes N_{kj}]$

$$(H_1,\ldots,H_m)\otimes (K_1,\ldots,K_n)=(\sum_{h=1}^m H_h\otimes E_{hh})(\sum_{j=1}^n E_{jj}\otimes K_j)$$

$$\left[egin{array}{c} \Delta_{ij} \mathcal{K}_j \end{array}
ight] = \left[egin{array}{cccc} \Delta_{11} & \cdots & \Delta_{1n} \ dots & & dots \ \Delta_{n1} & \cdots & \Delta_{nn} \end{array}
ight] \left[egin{array}{cccc} \mathcal{K}_1 & & & \ & \ddots & & \ & & \mathcal{K}_n \end{array}
ight]$$

where $(\Delta_{ij})_{hh} = (H_h)_{ij}$, is a principal submatrix of

$$\left[egin{array}{ccc} \Delta_{ij}\otimes \mathcal{K}_{j} \end{array}
ight] = \left[egin{array}{ccc} \Delta_{11} & \cdots & \Delta_{1n} \ dots & & dots \ \Delta_{n1} & \cdots & \Delta_{nn} \end{array}
ight] oldsymbol{\circ} \left[egin{array}{ccc} \mathcal{K}_{1} & & & \ & \ddots & \ & & \mathcal{K}_{n} \end{array}
ight]$$

 generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product

- generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product
- generalized tensor product (of variable-order matrices) contains weaving as a special case

- generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product
- generalized tensor product (of variable-order matrices) contains weaving as a special case
- weaving with respect to J is generalized tensor product

- generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product
- generalized tensor product (of variable-order matrices) contains weaving as a special case
- weaving with respect to J is generalized tensor product
- Diţă's construction is a special case of generalized tensor product