Self-Orthogonal Codes and Hadamard Matrices

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Masaaki Harada)

> January 11, 2015 Kumamoto University

- $k \in \mathbb{Z}$, $k \ge 2$.
- \mathbb{Z}_k : the ring of integers modulo k.
- a submodule C ⊂ Zⁿ_k is called a code of length n over Z_k, or a Z_k-code of length n.
- $({m x},{m y})=\sum_{i=1}^n x_i y_i$, where ${m x},{m y}\in\mathbb{Z}_k^n$,
- C is self-dual if $C = C^{\perp}$, where $C^{\perp} = \{ \boldsymbol{x} \in \mathbb{Z}_{k}^{n} \mid (\boldsymbol{x}, \boldsymbol{y}) = 0 \; (\forall \boldsymbol{y} \in C) \},$

Database by M. Harada and A. M.

 $http://www.math.is.tohoku.ac.jp/{\sim}munemasa/selfdualcodes.htm$

k	complete	comments
3	≤24	28 with min. wt. 9
5	≤ 16	∄20 with min. wt. 10
7	≤ 12	16 with min. wt. 7; 20 with min. wt. $9\exists !?$

$$k = 3$$
 length 24 by Harada–M. (2009),
length 28 by Harada–M–Venkov. (2009).

- k = 5 length ≤ 16 by Harada–Östergård (2003), length 20 by Harada–M. (2009),
- k = 7 length ≤ 12 by Harada–Östergård (2002), length 16 by Kim–Lee (2012), length 20 by Gulliver–Harada (1999), Gulliver–Harada–Miyabayashi (2007).

Classifying Self-Dual Codes Using Lattices

Proposed by Harada–M.–Venkov (2009) for k = 3, length 28. Also used by Harada–M. (2009) for k = 5, length 20.

- $\pi: \mathbb{Z} \to \mathbb{Z}_k$: canonical surjection.
- $\pi: \mathbb{Z}^n \to \mathbb{Z}^n_k \supset C$. Construction A_k means:

$$L = \frac{1}{\sqrt{k}} \pi^{-1}(C) \subset \mathbb{R}^n$$

•
$$C = C^{\perp} \implies L$$
: unimodular.

Such lattices have been classified for $n \leq 25$. Example: n = 8: \mathbb{Z}^8 and E_8 . A lattice obtained by Construction A_k contains a *k*-frame: $\mathcal{F} = \{\pm f_1, \ldots, \pm f_n\}$ with

$$(f_i, f_j) = k \delta_{i,j}.$$

$L \subset \mathbb{R}^n$: unimodular lattice

If L contains a k-frame $\mathcal{F} = \{\pm f_1, \ldots, \pm f_n\}$, i.e.,

$$(f_i, f_j) = k\delta_{i,j},$$

then $L \subset \frac{1}{k}\mathbb{Z}\mathcal{F}$, so

$$C = L/\mathbb{Z}\mathcal{F} \subset \frac{1}{k}\mathbb{Z}\mathcal{F}/\mathbb{Z}\mathcal{F} \cong \mathbb{Z}\mathcal{F}/k\mathbb{Z}\mathcal{F} \cong \mathbb{Z}_k^n$$

and C is a self-dual code.

 Knowledge of unimodular lattices can be used to classify self-dual codes.

$$C\mapsto \frac{1}{\sqrt{k}}\pi^{-1}(C): \text{ lattice}$$

$$(L,\mathcal{F})\mapsto L/\mathbb{Z}\mathcal{F}: \text{ code}$$

The above correspondence gives, for a fixed lattice L:

{codes
$$C$$
 with $\frac{1}{\sqrt{k}}\pi^{-1}(C) \cong L$ }/(± 1)-monomial equiv.
 $\stackrel{1:1}{\leftrightarrow} \{k\text{-frames of } L\}/\operatorname{Aut}(L)$

k	complete	comments
3	≤24	28 with min. wt. 9
5	≤ 16	$ \exists 20 \text{ with min. wt. } 10 $
7	≤ 12	16 with min. wt 7, 20 with min. wt. $9\exists !?$

$$k = 3$$
 length 24 by Harada–M. (2009),
length 28 by Harada–M–Venkov. (2009)

- k = 5 length ≤ 16 by Harada–Östergård (2003), length 20 by Harada–M. (2009),
- k = 7 length ≤ 12 by Harada–Östergård (2002), length 16 by Kim–Lee (2012), length 20 by Gulliver–Harada (1999), Gulliver–Harada–Miyabayashi (2007).

The only known [20, 10, 9] code C over \mathbb{Z}_7

Length= 20, Self-dual \implies dimension= 10, minimum Hamming weight= 9 (largest possible). For the only known such code C, Construction A_7 gives the

lattice D_{20}^+ .

- Is C the only [20, 10, 9] code up to equivalence which gives D_{20}^+ by Construction A_7 ?
- **2** Is there any [20, 10, 9] code which gives a lattice other than D_{20}^+ by Construction A_7 ? For example $D_{12}^+ \oplus E_8$?

$$D_{20} = \langle \pm e_i \pm e_j \mid 1 \le i < j \le 20 \rangle.$$

$$D_{20}^+ = \langle D_{20}, \frac{1}{2} \mathbf{1} \rangle \subset \frac{1}{2} \mathbb{Z}^{20}.$$

$$\cong \frac{1}{\sqrt{7}} \pi^{-1}(C).$$

[20, 10, 9] code C over \mathbb{Z}_7

Construction A_7 gives the lattice D_{20}^+ .

$$D_{20} = \langle \pm e_i \pm e_j \mid 1 \le i < j \le 20 \rangle.$$

$$D_{20}^+ = \langle D_{20}, \frac{1}{2} \mathbf{1} \rangle$$

$$\cong \frac{1}{\sqrt{7}} \pi^{-1}(C) \quad \text{contains a 7-frame } \mathcal{F}$$

 $\mathcal{F} = \{\pm f_1, \dots, \pm f_{20}\}, f_i \text{ is of the form}$

$$\frac{1}{2}(\pm 3,\pm 1,\ldots,\pm 1)$$

norm

$$7 = \frac{28}{4} = \frac{(\pm 3)^2 + 19 \cdot (\pm 1)^2}{4}$$

Skew Hadamard matrices of order 20

Theorem

If Construction A_7 of a self-dual [20, 10, 9] code over \mathbb{Z}_7 gives the lattice D_{20}^+ , then the 7-frames are of the form

$$\frac{1}{2}(H+2I)$$

where H is a Hadamard matrix of order 20 satisfying $H+H^{\top}=2I.$

Considering Hamming weight, we may assume the 7-frames are of the form _____

$$\frac{1}{2} \begin{bmatrix} 3 & \pm 1 \\ & \ddots & \\ \pm 1 & & 3 \end{bmatrix}$$

Theorem

If Construction A_7 of a self-dual [20, 10, 9] code over \mathbb{Z}_7 gives the lattice D_{20}^+ , then the 7-frames are of the form

$$\frac{1}{2}(H+2I) = \frac{1}{2} \begin{bmatrix} 3 & \pm 1 \\ & \ddots & \\ \pm 1 & & 3 \end{bmatrix}$$

where H is a Hadamard matrix of order 20 satisfying $H+H^{\top}=2I.$

Proof.

If $H_{ij} = H_{ji}$, then the Hamming wt. of the codeword corresponding to $e_i + e_j \in D_{20}$ is < 9, a contradiction. So $H + H^{\top} = 2I$. Since $(H + 2I)(H + 2I)^{\top} = 28I$, we have $HH^{\top} = 20I$.

- Is C the only [20, 10, 9] code up to equivalence which gives D_{20}^+ by Construction A_7 ?
 - Skew Hadamard matrices of order 20: classified.
 - ② ∃ skew Hadamard matrix which gives a self-dual [20, 10, 8] code.
- Is there any [20, 10, 9] code which gives a lattice other than D_{20}^+ by Construction A_7 ?
 - For example $D_{12}^+ \oplus E_8$?
 - Q Given a self-dual code over Z_k, describe a condition under which Construction A_k gives a decomposable lattice.

- A colloquium talk at University of Tsukuba 1983?
- ⁽²⁾ Hokkaido University in 1993 or 1996? Existence of an orthogonal decomposition of $\mathfrak{sl}(6,\mathbb{C})$ into 7 Cartan subalgebras, equivalently, mutually unbiased bases in dimension 6.
- **3** R. Craigen in 2014, mentions a conjecture which says that the existence of a GH(n, U) implies that |U| is a prime power.