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A t-(v, k, λ) design (X,B)

X is a finite set, |X| = v,

B ⊂
(
X

k

)
= {k-element subsets of X},

∀T ∈
(
X

t

)
,

λ = |{B ∈ B | B ⊃ T}| (constant).

Elements of X are called “points”, those of B “blocks”.
Woolhouse (1844), Kirkman (1847), Steiner (1853).

Example

5-(24, 8, 1) design, uniqueness was shown by Witt (1938),
with automorphism group M24 of Mathieu (1873).
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Existence problem

Given t, v, k, λ, does there exist a t-(v, k, λ) design?

Before Teirlinck (1987), only a few t-designs with t ≥ 5 were
known.

Theorem (Teirlinck)

Nontrivial t-designs exist for all t ≥ 1, i.e.,

∀t ≥ 1, ∃v, ∃λ s.t. ∃t-(v, t + 1, λ) design.

CRC Handbook of Combinatorial Designs, 2nd ed. (2006):
∃ 3-(16, 7, 5) design?
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A property of 5-(24, 8, 1) design of Witt

(X,B): 5-(24, 8, 1) design.

∀B,B′ ∈ B, |B ∩ B′| ∈ {0, 2, 4, 8}.

Definition

A t-(v, k, λ) design (X,B) is self-orthogonal if

|B ∩ B′| ≡ 0 (mod 2) (∀B,B′ ∈ B).

In particular k ≡ 0 (mod 2).
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Hadamard 3-designs

If H is a Hadamard matrix of order 8n, i.e., H is a 8n× 8n
matrix with entries in {±1} satisfying HH> = 8nI,
=⇒ a self-orthogonal 3-(8n, 4n, 2n − 1) design.
Indeed, after normalizing H so that its first row is 1:

H =

[
1
H1

]
,

an incidence matrix is given by

M =
1

2

[
J − H1

J + H1

]
.

3-(8, 4, 1) Hadamard design is self-orthogonal.
6∃3-(8, 4, λ) designs for λ > 1

3-(16, 8, 3) Hadamard design is self-orthogonal. Do there
exist 3-(16, 8, 3µ) designs for µ > 1?

Take union of µ copies? Use magma (method 1).
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(X,B): self-orthogonal design

Let

M =

X

B
[{

1 B 3 x

0 B 63 x

]
be the |B| × |X| block-point incidence matrix. Then

self-orthogonal ⇐⇒ MM> = 0 over F2.

We call the row space C of M the (binary) code of the
design. Then C ⊂ C⊥.

For some Hadamard matrix H of order 16, the code C of the
design D obtained from H satisfies C = C⊥.

Search σ ∈ Aut(C), B ∪ σ(B) ⊂ C, using magma
(method 2).
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Dual weight 4

The dual code C⊥ of the code C of a t-design has minimum
weight at least t + 1.

Lemma

If (X,B) is a self-orthogonal 3-(v, k, λ) design, and the dual
code of its code has minimum weight 4, then v = 2k ≡ 0
(mod 4).

Recall 3-(8, 4, 1) Hadamard design exists.
6 ∃ self-orthogonal 3-(12, 6, λ) design.
∃ self-orthogonal 3-(16, 8, λ) design?
λ ≡ 0 (mod 3) is necessary.
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3-(16, 8, λ) design

λ ≤
(
16

8

)(
8

3

)(
16

3

)−1

= 1287

if we don’t require self-orthogonality.

Divisibility implies λ ≡ 0 (mod 3).

Write λ = 3µ.
µ = 1: Hadamard designs.
Need to choose |B| = 10λ = 30µ blocks out of(

16

8

)
= 12870.
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(X,B): self-orthogonal 3-(16, 8, λ) design

Let C be the code of (X,B). Then

C ⊂ C⊥

so
C ⊂ C̃ = C̃⊥ ⊂ C⊥.

There are only two such codes C̃, e8 ⊕ e8 and d16.

d16 is the row space of
01 01 01 01 01 01 01 01
11 11

11 11
. . .

...
11 11


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The code d16

d16 = row sp.


01 01 01 01 01 01 01 01
11 11

11 11
. . .

...
11 11


d16 has 128 + 70 vectors of weight 8,
64 + 35 complementary pairs of vectors of weight 8.
Self-orthogonal 3-(16, 8, λ) design (X,B) with λ = 3µ has

|B| = 30µ (15µ pairs).

µ = 1: Hadamard 3-design
µ = 2: method 21
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64 + 35 pairs of vectors of weight 8 in d16

Define a graph structure on 64 + 35 pairs:

{B1, B
c
1} ∼ {B2, B

c
2} ⇐⇒ |B1 ∩ B2| ∈ {2, 6}.

Then

64 = folded halved 8-cube,

valence = 28

35 = lines of P 3(F2)

valence = 16
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The folded halved 8-cube, P 3(F2)

The 8-cube is the graph with vertex set {0, 1}8, two vertices
are adjacent whenever they differ by exactly one coordinate.

‘halved’ = even-weight vectors
‘folded’ = identify with complement

The folded halved 8-cube Γ has 26 = 64 vertices, and its
valence is 28.

The set of 35 lines of P 3(F2) naturally carries the structure
of a graph.
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64 + 35 pairs of vectors of weight 8

Need to choose |B|/2 = 15µ pairs out of 64 + 35.
(X,B) is a self-orthogonal 3-(16, 8, 3µ) design iff

valence

8µ 4(µ − 1) 64 − 8µ 4(7 − µ) 64 =
folded halved
8-cube

7µ 6µ 35 − 7µ 4(4 − µ) 35 =
lines of P 3(F2)

Easy to find a subgraph of size 7µ, valence 6µ in P 3(F2) for
1 ≤ µ ≤ 5.
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The folded halved 8-cube

Need to find a partition into two subgraphs (equitable
partition) {

size 8µ valence 4(µ − 1)
size 64 − 8µ valence 4(7 − µ),

for µ = 3, 4.
1 µ = 4: find an equitable partition, both of size 32 and

valence 12, using magma (method 3).
2 µ = 3: find an equitable partition,{

size 24 valence 8
size 40 valence 16,

using magma (method 4).

Different methods were employed:
1 use an appropriate subgroup of the automorphism group,
2 zero-one optimization.
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Zero-one optimization

Need to find an equitable partition,{
size 24 valence 8
size 40 valence 16,

Let A

A =

[
A11 A12

A21 A22

]
.

be the 64 × 64 adjacency matrix of the folded halved 8-cube.
Then

A111 = 81, A221 = 161, A1 = 281,

so [
A11 A12

A21 A22

] [
1
0

]
=

[
81
121

]
=

[
121
121

]
−

[
41
0

]
.

Ax = 121 − 4x, i.e., (A + 4I)x = 121.
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Zero-one optimization to solve

(A + 4I)x = 121

Let A be the 64 × 64 adjacency matrix of the folded halved
8-cube.
We need to find a (0, 1)-vector x of weight 24 satisfying

(A + 4I)x = 121.

→ method 4.
Search for “maximal” (0, 1)-vector satisfying

(A + 4I)x ≤ 121,

to see if x has weight 24.
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We found an equitable partition{
size 24 valence 8
size 40 valence 16,

To summarize

Theorem

The following are equivalent:

1 ∃ a self-orthogonal 3-(16, 8, 3µ) design,

2 ∃ an equitable partition, of the folded halved 8-cube,{
size 8µ valence 4(µ − 1)
size 64 − 8µ valence 4(7 − µ),

,

3 µ ∈ {1, 2, 3, 4, 5}.

Thank you for your attention!
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