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About this talk

Part I:
e Hadamard's inequality
@ Hadamard matrices and generalizations
@ Constructions of Hadamard matrices
@ Quaternions and Lagrange's identity
@ Yang's generalization of Lagrange's identity
@ Yang's theorem
Part II:
@ Complementary sequences
@ A Laurent polynomial associated to a sequence
@ A two-variable Laurent polynomial associated to a matrix

@ A new proof of Yang's theorem using matrices
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Hadamard's inequality for an m X n matrix X

n

det(X) = Z sgn(o) H Ti o (i)
oESn i=1

This is a polynomial function in n? variables x;;.

The function det : [—1,1]™ — R takes maxima and minima,

but they are not fully understood.

This is not a problem in multivariable calculus, rather, a

combinatorial problem.

det is linear in each variable,

—> maxima and minima occur at end points

— enough to consider

det : {—1,1}" — Z.

A. Munemasa A matrix approach | G2M2, July 24, 2017 3 /20



X E {_1’ 1}n><n

Let G = XXT. Then G;; = n. Let
AL A2 2> 2 A 2 0.

be the eigenvalues of G. Then by the arithmetic-geometric mean,
n 1. n
det(X)? =detG = A< | — A
0 fIn< (25

=1
(eee) = ()
= —trG = —n :nn.
n n

|det X| < n™? with equality iff G = nl,

or equivalently, rows of X are pairwise orthogonal.
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Hadamard matrices

A matrix H € {—1,1}"*" is called a Hadamard matrix if
HH'" = nl.

Examples (Sylvester matrices):

1], E _11] E _ﬂ@ﬁ _11]

For n = 3:

1 1 1
+1 £1 +£1

impossible. In fact, 4 | n is necessary:

1.--1 1.--1 1.--1 1..-1
1.--1 1..-1 —1eee—1 —1+-+—1
1:¢¢1 —1---—1 1.--1 S R |
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The Hadamard conjecture

If a Hadamard matrix of order m exists, then n = 1,2 or 4 | n.
Conversely,

4 | n = 3IHadamard matrix of order n.

Before proceeding further into this combinatorial problem, let me
digress into topology.
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Complex Hadamard matrices

Instead of
det : {—1,1}" — Z,

consider
det : (SH™ — C,

where S' = {z € C | 2z = 1}.
With G = X X* X € (81)~»,

n 1. n
det(X)P=detG=[[ <= N\
s = a6 = T < (13

=1 =1
1 "1\
= —tI‘G = —Nn :nn.
n n

Equality holds iff rows of X are pairwise orthogonal.
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Complex Hadamard matrices

A matrix H € (S*)™*™ is called a complex Hadamard matrix if
HH* =nl.
Examples: (ordinary) Hadamard matrices, the character tables of

abelian groups.
What is

(H € (SYY"*" | HH* = nI}/ < left and right multiplication > ,

by monomial matrices

for n > 67
The 5th workshop on Real and Complex Hadamard Matrices and
Applications, 10—14 July, 2017, Budapest.
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Inverse orthogonal matrices and spin models

A matrix H € (C*)™*™ is called an inverse-orthogonal matrix if
H(HY)T = nI, where

HY = elementwise inverse of H.

Complex Hadamard = inverse-orthogonal.

Jones (1989) defined a “spin model” which is a special class of
inverse-orthogonal matrices.

Jaeger (1992) “Strongly regular graphs and spin models. ..":
Higman-Sims (sporadic finite simple group — strongly regular graph
— spin model).

Jaeger (1996), Jaeger-Matsumoto-Nomura (1998): spin models —
association schemes
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Back to real Hadamard matrices

4 | n = 3JHadamard matrix of order n.

o If H; and H5 are Hadamard matrices, then so is H; ® Ho.

@ In particular, for every n € N, there exists a Hadamard matrix
of order 2™.

e Paley (1933): if p = 3 (mod 4) is a prime, then there exists a
skew Hadamard matrix H of order p + 1 such that
H+ H'™ =2I.

Yet we do not know

i inf [{n | 1 < n < N, IHadamard matrix of order n}|
imin N >

0.
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Symmetric regular Hadamard matrices

A Hadamard matrix is said to be regular if it has constant row and
column sums.

Theorem (Goethals-Seidel (1970))

Symmetric regular Hadamard matrices with constant diagonal are
equivalent to strongly regular graphs with Latin square or negative
Latin square parameters:

(v, ks A, ) = (4m29m(2m +1),
(m=xE1)(m=*x2)F2m —2,m(m=+1)).
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Circulant Hadamard matrices

Cyclic symmetry:

is a circulant Hadamard matrix.

There is no circulant Hadamard matrix of order n > 4. \
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2 X 2 block matrices, dihedral group

{ 1 1} - {a b] - [_A B}? (A(—=B)T+BAT = 0?)

-1 1 —b a B A
A BR
— BR A

A(—BR)" + (BR)A"

= —ARB" + BRA" ifR=R",

= —ABR + BAR fBR=RB', AR =RAT
=0 if AB = BA.

A. Munemasa A matrix approach | G2M2, July 24, 2017 13 /20



Goethals-Seidel (1970)

Let
A BR CR DR 1
— R T T .
0 — BR é D'R C _IR . R=—
—CR D'R A —B'R
—DR —-C'™R B'R A 1

If A, B,C, D are circulant and
AAT + BB" +CCT + DD" = 4nl,

then rows of H are pairwise orthogonal.

A Hadamard matrix of order 4n has (4n)? entries, while four
circulant matrices A, B, C, D can be specified only by a total of 4n
entries.
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Quaterninons

Goethals-Seidel array:

A BR CR DR
—BR A —D'R C'R
—CR D'R A —B"R
—DR —-C"R B'R A
a b c d
—-b a —-d c

Y = e d a —b =al+bit+ cy +dk

—d —c b a
i2:j2:k2:—1,

ij = —ji =k, jk=—kj =14, ki=—ik=j.

detY = (a® + b* 4 c® + d?)? = |al + bi + cj + dk|*.
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Quaterninons

H = {al 4+ bi + c¢j + dk | a,b,c,d € R}.
i2 =352 =k*= -1,
1) = —J1t =k, jk = —kj =1, kit = —ik = 3.
For Y = al + bt + cj + dk € H, define the norm by
Y| = Va2 + b2 + ¢2 + d2.

Then
YZ|=1|Y||Z] (Y,Z € H).
Y =al +bi+ cj + dk,
Z =el+ fi+gj + hk,
YZ = ql + ri+ s3 + tk,
q2+r2+s2—|—t2:(a2—|—b2—|—c2—|—d2)(ez—|—fz+gz—|—h2).
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Lagrange’s identity

Hamilton (1843); Lagrange (1770)

Y = al + bi + cj + dk,
Z =el+ fi+gj+ hk,
YZ = ql +ri+ sj + tk.

q2—|—1°2—|—s2—|—t2:(a2+b2—|—c2—|—d2)(62—|—fz—|—g2—i—h2).

q =ae —bf —cg — dh,
r =af + be + ch — dg,
s = ag — bh + ce + df,
t = ah 4+ bg — cf + de.

Every natural number is a sum of four integer squares.

A. Munemasa A matrix approach | G2M2, July 24, 2017 17 /20



Generalization of Lagrange identity by Yang (1983)

q2—|—r2—|—52+t2:(a2—|—b2+02—|—d2)(62—|—f2—|—92+h2).

q=ae —bf —cg— dh,
r =af + be + ch — dg,
s = ag — bh + ce + df,
t = ah + bg — cf + de.
In a commutative ring with automorphism * satisfying *? = id,
replace 2 by xz* for x € {a,b,...,t}, to get
qq* + rr* + ss* + tt*
= (aa™ 4+ bb* + cc* + dd*)(ee” + ff* + gg* + hh™).
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Generalization of Lagrange identity by Yang (1983)

qq* + rr* + ss* + tt*
= (aa™ 4+ bb* + cc* + dd*)(ee” + ff* + gg* + hh™)

q=ae—bf —cg—dh —> a*e—bf" —cg" — dh”*
r=af +be+ch—dg— af"+be+ ch— dg
s=ag —bh+ce+df — ag®” — bh + c’e + df
t=ah+bg—cf +de —ah”™+bg —cf + d'e

Yang used this for the Laurent polynomial ring Z[z*'] with
x:x— x L.
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Yang (1989)

Composition of {41}-sequences: a method to produce long
sequences from short ones.

a,b,c,d,e, f,g,h are “nice” {£1}-sequences
—> ¢q,7,S,t can be used to build circulant matrices
A,B,C,D with AAT + BB" + CC" + DD = 4nI
—> (Goethals-Seidel array) Hadamard matrix

The proof is constructive but it has no explanation. We expanded the
original proof (9 lines) to a 9 page paper (arXiv:1705.05062v2),
which will be explained in detail in my second talk.
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