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Cospectral graphs
Two graphs Γ, Γ′ are cospectral if their adjacency matrices A,A′

have the same spectra.

cospectral ⇐⇒ A′ = P>AP
for some orthogonal matrix P.

isomorphic ⇐⇒ A′ = P>AP
for some permutation matrix P.

{permutation matrices}

⊆ {P ∈ O(n,Q) | P1 = 1,

P>AP (0,1)-matrix with 0 diagonals}

Wang–Xu (2006): “=” ⇐⇒ determined by “generalized”
spectrum.
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Godsil–McKay switching

1 Godsil, McKay (1982): “Constructing cospectral graphs”
2 Van Dam, Haemers, Koolen, Spence (2006): Johnson

(non-distance-regular cospectral mate)
3 Abiad, Haemers (2016), Kubota (2016): symplectic graphs

(SRG)

4 Barwick, Jackson, Penttila (2017): orthogonal polar

(SRG)

5 Ihringer (2017): all polar

(SRG)

6 Munemasa (2017): Twisted Grassmann; Kubota (2017):
Doob

(DRG)
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Godsil–McKay switching

Γ = (X ,E): graph, X = (
⋃

i Ci) ∪ D.
Assume ∀x ∈ D, ∀i , x is adjacent to 0,1/2 or all vertices of Ci .

Godsil–McKay switching: interchange adj. and non-adj. between
x ∈ D and Ci if x is adj. to 1/2 of Ci .

Theorem (Godsil–McKay, 1982)
If {Ci}i is equitable, then the resulting graph is cospectral with
the original.

Equitable: ∀i , ∀x ,∀y ∈ Ci , ∀j , |Γ(x) ∩ Cj | = |Γ(y) ∩ Cj |.
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Godsil–McKay switching with one cell C

Γ = (X ,E): graph, X = C ∪ D.
Assume ∀x ∈ D, x is adjacent to 0,1/2 or all vertices of C.

Godsil–McKay switching: interchange adj. and non-adj. between
x ∈ D and C if x is adj. to 1/2 of C.

In this special case:

Theorem (Godsil–McKay, 1982)
If the subgraph of Γ induced on C is regular, then the resulting
graph is cospectral with the original.
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One cell of size 4

Γ = (X ,E): graph, X = C ∪ D, |C| = 4.
Assume ∀x ∈ D, x is adjacent to 0,2 or 4 vertices of C.

Godsil–McKay switching: interchange adj. and non-adj. between
x ∈ D and C if x is adj. to 2 of C.

In this special case:

Theorem (Godsil–McKay, 1982)
If the subgraph of Γ induced on C is regular, then the resulting
graph is cospectral with the original.

If |C| = 2, then the switched graph is isomorphic to the original.
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Fano plane in a polar space

A quadrangle C in a Fano plane.

Every line meets C at 0 or 2 points.
⇑

Neighbors of a vertex outside C
=⇒ C can be used in Godsil–McKay switching.
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Polar space
Let V be a vector space over Fq with nondegenerate

symplectic
hermitian
symmetric bilinear

 form B.

The polar space consists of the set

P = {x : projective point (1-dimensional subspace)
B = 0 on x (isotropic) }

Strongly regular polar graph Γ: P as vertices,

x ∼ y ⇐⇒ x ⊆ y⊥.

That is,
Γ(x) = x⊥ ∩ P.
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Fano plane in a polar space
A quadrangle C in a Fano plane.

For any line L,
|L ∩ C| = 0 or 2

If this plane P is totally isotropic, then

Γ(x) ∩ P = x⊥ ∩ P = a line of P or P
=⇒ |Γ(x) ∩ C| = 0,2 or 4

=⇒ C can be used in Godsil–McKay switching.
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One cell of size 4 partitioned into 2 parts
C = C1 ∪ C2 Ci = Li \ (L1 ∩ L2).
A quadrangle is a union of two lines minus the point of
intersection.

L1

L2

For any line L,
|L ∩ C1| = |L ∩ C2|, or
L ∩ (C1 ∪ C2) = C1 or C2.

If this plane P is totally isotropic, then

Γ(x) ∩ C = C1 or C2 or one point each from Ci , or C
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Theorem
Let Γ be a graph whose vertex set is partitioned as C1 ∪ C2 ∪ D,
where |C1| = |C2| = 2. Assume that the subgraph of Γ induced
on C is regular, and that

|Γ(x) ∩ C1| = |Γ(x) ∩ C2|, or
Γ(x) ∩ (C1 ∪ C2) = C1 or C2.

Construct a graph Γ from Γ by modifying edges between C and
D as follows:

Γ(x) ∩ C =


C2 if Γ(x) ∩ C = C1,
C1 if Γ(x) ∩ C = C2,
Γ(x) ∩ C otherwise,

for x ∈ D. Then Γ is cospectral with Γ.
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Proof: A(Γ) = P>A(Γ)P

A(Γ) =

C1 C2 D
C1

C2

D

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



P =


1
2


1 − 1 1 1
− 1 1 1 1
1 1 1 − 1
1 1 − 1 1

 0

0 ID

 ∈ O(n,Q).

�

The original Godsil–McKay switching (with one cell C) uses

Q =

[1
2(J − 2I) 0

0 ID

]
,

but PQ> is a permutation matrix, resulting in:

P>A(Γ)P isomorphic Q>A(Γ)Q.
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Projective space of order q > 2

C = C1 ∪ C2 Ci = Li \ (L1 ∩ L2).
Union of two lines minus the point of intersection. |C| = 2q.

L1

L2

For any line L,
|L ∩ C1| = |L ∩ C2|, or
L ∩ (C1 ∪ C2) = C1 or C2.
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Theorem
Let Γ be a graph whose vertex set is partitioned as C1 ∪ C2 ∪ D,
where |C1| = |C2| = q. Assume that C1 ∪ C2 is equitable, and
that

|Γ(x) ∩ C1| = |Γ(x) ∩ C2|, or
Γ(x) ∩ (C1 ∪ C2) = C1 or C2.

Construct a graph Γ from Γ by modifying edges between C and
D as follows:

Γ(x) ∩ C =


C2 if Γ(x) ∩ C = C1,
C1 if Γ(x) ∩ C = C2,
Γ(x) ∩ C otherwise,

for x ∈ D. Then Γ is cospectral with Γ.
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Proof: A(Γ) = P>A(Γ)P

A(Γ) =

C1 C2 D
C1

C2

D

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 , P =

I − 1
q J 1

q J 0
1
q J I − 1

q J 0
0 0 I



I − 1
q J 1

q J 0
1
q J I − 1

q J 0
0 0 I

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

I − 1
q J 1

q J 0
1
q J I − 1

q J 0
0 0 I

 =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



[
∗ ∗

] [I − 1
q J 1

q J
1
q J I − 1

q J

]
=



[
0 1

]
if
[
∗ ∗

]
=

[
1 0

]
[
1 0

]
if
[
∗ ∗

]
=

[
0 1

]
[
∗ ∗

] if ∗1J = ∗2J
(|Γ(x) ∩ C1| = |Γ(x) ∩ C2|)
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=

[
1 0

]
[
1 0

]
if
[
∗ ∗

]
=

[
0 1

]
[
∗ ∗

] if ∗1J = ∗2J
(|Γ(x) ∩ C1| = |Γ(x) ∩ C2|)
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Proof: A(Γ) = P>A(Γ)P

A(Γ) =

C1 C2 D
C1

C2

D

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 , P =

I − 1
q J 1

q J 0
1
q J I − 1

q J 0
0 0 I


�

The original Godsil–McKay switching (with one cell C) uses

Q =

 1
q J − I 1

q J 0
1
q J 1

q J − I 0
0 0 ID

 =

[ 1
q J − I 0

0 ID

]
.

[
∗
] [1

q
J − I

]
=

1 − ∗ if ∗J = q1 (|Γ(x) ∩ C| = 1
2 |C|)[

∗
]

if
[
∗
]
= 0 or 1
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Hypotheses of the two switchings

Two switchings require different hypotheses.

Godsil–McKay: for |C| = 2q,

|Γ(x) ∩ C| = 0,q or 2q

Ours: for C = C1 ∪ C2, |C1| = |C2| = q,

|Γ(x) ∩ C| could possibly be any even number

For q > 2, these two methods in general give non-isomorphic
graphs.

Question: Is there a common generalization?
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Projective space of order q > 2

C = C1 ∪ C2 Ci = Li \ (L1 ∩ L2).
Union of two lines minus the point of intersection. |C| = 2q.

L1

L2

For any line L,
|L ∩ C1| = |L ∩ C2|, or
L ∩ (C1 ∪ C2) = C1 or C2.

Let Γ be the graph of non-isotropic points in a hermitian polar
space. Two vertices are adjacent iff orthogonal. If C consists
entirely of non-isotropic points, the switching can be applied.
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For any line L,
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Non-isotropic points

Let V be a vector space over Fq2 equipped with a
nondegenerate hermitian form.

Let Γ be the graph of non-isotropic points of V .
Two vertices are adjacent iff orthogonal.

Then Γ is a strongly regular graph.

For all cliques {x , y , z} of Γ, |Γ(x) ∩ Γ(y) ∩ Γ(z)| is independent
of the choice of {x , y , z}.

After switching, this property will be violated
=⇒ the resulting cospectral graph is not isomorphic to the
original graph Γ.
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Switching Γ to Γ̄

C = C1 ∪ C2 Ci = Li \ (L1 ∩ L2).
Union of two lines minus the point of intersection. |C| = 2q.

L1 = Γ(x) ∩ P

L2

Γ(y) ∩ P Γ(z) ∩ P

|Γ(x) ∩ Γ(y) ∩ Γ(z) ∩ P| > |Γ̄(x) ∩ Γ̄(y) ∩ Γ̄(z) ∩ P|.
Therefore, Γ 6∼= Γ̄.
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Future work

Is there a common generalization for Godsil–McKay
switching and our switching?

Pairs of DRG having the same parameters can be obtained
by either switching? (yes for twisted Grassmann, Doob).
For example, Alt(n + 1,q) and Quad(n,q).

Thank you very much for your attention!
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