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Krein condition for coherent configurations

S. A. Hobart, Linear Algebra Appl. 226/228 (1995), 499–508.

In our applications . . . , we use Z = Z′ = ϕs(J),
where J is the all 1s matrix. Other choices do not
produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more
general setting (fiber-commutative).

In doing so, we develop a theory analogous to commutative
coherent configurations = association schemes
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History
L. L. Scott (1973) attributes the discovery of the source of Krein
condition

qk
ij ≥ 0

to C. Dunkl, who attributes the condition itself to the work of
M. G. Krein (1950). P. Delsarte (1973) formulated and proved
the inequality for association schemes.

The indices i, j, k range over a set of irreducible
representations appearing in a particular module in question.

The parameters qk
ij are called Krein parameters.

A special case is the tensor product coefficients for irreducible
characters of finite groups.

Cameron, Goethals and Seidel (1978) related Krein parameters
to Norton algebras.
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Combinatorial applications

Properties of Krein parameters:
Krein conditions
Absolute bounds

are used to rule out existence of certain putative strongly regular
graphs.

See Brouwer’s database of strongly regular graphs.
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Coherent configuration = coherent algebra

A C-subspace A ⊂ Mn(C) is called a coherent algebra if
closed under matrix product,
I ∈ A,
closed under entrywise product,
J ∈ A,
closed under conjugate-transpose ∗.

=⇒ ∃{Ai | i ∈ Λ}: basis of A, (0, 1)-matrices, with∑
i∈Λ

Ai = J, {Ai | i ∈ Λ} = {A⊤
i | i ∈ Λ}.

The trivial coherent algebra: ⟨I, J⟩, Mn(C).
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Strongly regular graph

Let A be the adjacency matrix of an undirected graph G. Then
the 3-dimensional vector space

A = ⟨I,A, J − I − A⟩

is a (commutative) coherent algebra if and only if G is a strongly
regular graph, i.e.,

AJ = kJ,

A2 = kI + λA + µ(J − I − A)

for some k, λ, µ.
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Projective plane (P,L)

It is an incidence structure consists of points P , lines L with
incidence relation between them, satisfying certain axioms. It
can be described by a set of matrices whose rows and columns
are indexed by P ∪ L:

(P L
P ∗ ∗
L ∗ ∗

)

(
I 0
0 0

)
,

(
J − I 0

0 0

)
,

(
0 0
0 I

)
,

(
0 0
0 J − I

)
(
0 M
0 0

)
,

(
0 J − M
0 0

)
,

(
0 0

M⊤ 0

)
,

(
0 0

J − M⊤ 0

)
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Commutative coherent algebra = association
scheme

Mn(C) ⊃ A = ⟨Ai | i ∈ Λ⟩ =
⊕
i

CEi.

EiEj = δijEi.

Ei ◦ Ej =
1

n

∑
k

qk
ijEk.

The scalars qk
ij are called Krein parameters. Krein condition

asserts qk
ij ≥ 0. To see this, it suffices to invoke

Lemma
Let A,B ∈ Mn(C) be Hermitian matrices. If A,B ⪰ 0, then
A ◦ B ⪰ 0.

Proof.
A ⊗ B ⪰ 0 and it contains A ◦ B as a principal submatrix.
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Krein condition
We could begin with a commutative algebra

A = ⟨Ai | i ∈ Λ⟩
defined by structure constants:

AiAj =
∑
k

pk
ijAk.

With modest hypothesis, it has decomposition

A =
⊕
i

CEi, EiEj = δijEi.

Define ◦ by Ai ◦ Aj = δijAi (and extend by linearity). Define
qk
ij by

Ei ◦ Ej =
∑
k

qk
ijEk.

If qk
ij ≥ 0 fails, then A cannot be a coherent algebra (there

cannot be a coherent algebra with structure constants pk
ij).
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Non-commutative case
Let A be a (not necessarily commutative) coherent algebra.

Mn(C) ⊃ A =
⊕
i

Ii,

Ii
∼= Mei(C) = C (∗-isomorphic)

Ii = AEiA = AEi = CEi

Let P(·) denote the subset of Hermitian positive semidefinite
matrices:

P(·) = {Z ∈ · | Z ⪰ 0}.

Krein condition (for coherent configurations) asserts

∀F ∈ P(Ii), ∀F ′ ∈ P(Ij), F ◦ F ′ ⪰ 0 Ei ◦ Ej ⪰ 0

or equivalently (F ◦ F ′)Ek ∈ P(Ik) for all k.
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Summary of results

commutative fiber-commutative
(central) primitive basis of

idempotents matrix units
matrix of

Krein parameters Krein parameters
qk
ij Qk

ij

essentially unique
Krein condition Krein condition

qk
ij ≥ 0 Qk

ij ⪰ 0

absolute bound absolute bound∑
qk
ij ̸=0 mk ≤ mimj

∑
k mk rankQk

ij ≤ mimj
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A =
⊕

Aij =
⊕

Ik

Recall, for a projective plane,

(P L
P ∗ ∗
L ∗ ∗

)
.

In general,

A =

 A11 A12 ∗
A21 A22 ∗
∗ ∗ ∗

 =
⊕
i,j

Aij =
⊕
k

Ik, Ik
∼= Mek(C).

We say A is fiber-commutative if Aii is commutative for all i.

Lemma (Hobart–Williford, 2014)
If A is fiber-commutative, then dimAij ∩ Ik = 0 or 1 for all
i, j, k.
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A =
⊕

Aij =
⊕

Ik

To avoid cumbersome notation, we fix I = Ik0. Let E be the
corresponding central idempotent:

I = AEA = AE.

Since I ∼= Me(C) (∗-isomorphic) for some e, I has a basis of
matrix units {eij}:

eijekℓ = δjkeil.

Then
P(I) = {

∑
i,j

zijeij | (zij) ∈ P(Me(C))}.

Krein condition asserts (in particular)

∀F, F ′ ∈ P(I), (F ◦ F ′)E ∈ P(I).
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A =
⊕

Aij, I = ⟨eij | 1 ≤ i, j ≤ e⟩

Lemma (Hobart–Williford, 2014)
If A is fiber-commutative, then dimAij ∩ I = 0 or 1 for all i, j.

Since

eijekℓ = δjkeiℓ,

AijAkℓ ⊂ δjkAiℓ,

we may assume without loss of generality eij ∈ Aij . So,

⊕
i,j

Aij =
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⊃ I =
e11 e12 0
e21 e22 0
0 0 0

Akihiro Munemasa (Tohoku University) 宗政昭弘 (東北大学) Taipei, 2019 14 / 18



P(I) = {
∑

i,j zijeij | (zij) ∈ P(Me(C))}
For F =

∑
zijeij , F ′ =

∑
z′
ijeij ∈ P(I), Krein condition

asserts
(F ◦ F ′)E ⪰ 0.

Since eij ∈ Aij and Aij ◦ Akℓ = 0 if (i, j) ̸= (k, ℓ),

eij ◦ ekℓ = 0 if (i, j) ̸= (k, ℓ).

Since AijE = EAij ⊆ Aij ∩ I = Ceij,

(eij ◦ eij)E = qijeij for some qij ∈ C.

Thus
(F ◦ F ′)E =

((∑
zijeij

)
◦
(∑

z′
ijeij

))
E

=
∑

zijz
′
ijqijeij

=
∑

(Z ◦ Z′ ◦ Q)ijeij

where Z = (zij), Z′ = (z′
ij), Q = (qij).
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P(I) = {
∑

i,j zijeij | (zij) ∈ P(Me(C))}

Recall Q = (qij) is defined by (eij ◦ eij)E = qijeij.

(F ◦ F ′)E ⪰ 0 (∀F, F ′ ∈ P(I))
⇐⇒ Z ◦ Z′ ◦ Q ⪰ 0 (∀Z,Z′ ∈ P(Me(C)))
⇐⇒ Q ⪰ 0.

Note J ◦ J ◦ Q = Q. This explains Hobart’s observation:
In our applications . . . , we use Z = Z′ = ϕs(J),
where J is the all 1s matrix. Other choices do not
produce any new results for these particular examples.

Linear Algebra Appl. 226/228 (1995), p. 502.
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Theorem
For a fiber-commutative coherent algebra A =

⊕
k Ik, where

Ik = AEk
∼= Mek(C) = ⟨ek

ij | 1 ≤ i, j ≤ ek⟩, Krein condition

(F ◦ F ′)Ek ⪰ 0 (∀F ∈ P(Ii), ∀F ′ ∈ P(Ij))

is equivalent to
Qk

ij ⪰ 0,

where Qk
ij is the “matrix of Krein parameters” defined by

ei
ℓm ◦ ej

ℓm =
1

scalar

∑
k

(Qk
ij)ℓmek

ℓm.

Moreover, Qk
ij is essentially unique.
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Qk
ij is essentially unique

Indeed, a basis of matrix units {ek
ij | 1 ≤ i, j ≤ ek} for

Ik
∼= Mek(C) is essentially unique, since

dimAij ∩ Ik = 0 or 1.

Uniqueness is up to scalar multiplication by a complex number
of absolute value 1.
This results in the uniqueness of Qk

ij up to entrywise
multiplication by a rank-one hermitian matrix:(

a b
b c

)
∼

(
a bζ
bζ c

)
=

(
a b
b c

)
◦
((

1
ζ

) (
1 ζ

))
.

Thank you very much for your attention!
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