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About the title

S. A. Hobart, “Krein conditions for coherent configurations,”
Linear Algebra Appl. 226/228 (1995), 499-508.
In our applications ..., we use Z = Z' = ¢4(J),
where J is the all 1s matrix. Other choices do not
produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more
general setting (fiber-commutative). In doing so, we develop a
theory for that setting:

commutative association schemes

C |fiber-commutative coherent configurations

C coherent configurations
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The goal of this talk is to clarify this claim by proving it in a more
general setting (fiber-commutative). In doing so, we develop a
theory for that setting:

multiplicity-free permutation groups

C intransitive permutation groups
= | which is multiplicity-free on each orbit

C (general) permutation groups
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where J is the all 1s matrix. Other choices do not
produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more
general setting (fiber-commutative). In doing so, we develop a
theory for that setting:

commutative association schemes
C non-commutative association schemes
C coherent configurations
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The goal of this talk is to clarify this claim by proving it in a more
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L. L. Scott (1973) attributes the discovery of the source of Krein
condition

a; >0
to C. Dunkl, who attributes the condition itself to the work of

M. G. Krein (1950). P. Delsarte (1973) formulated and proved
the inequality for association schemes.

The indices 1, j, k range over a set of irreducible
representations appearing in a particular module in question.

The parameters qu are called Krein parameters.

A special case is the tensor product coefficients for irreducible
characters of finite groups.
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YKpanHckunin matematmnydeckunin xypHan (1950)
|@|=min X' |c,|, (7.22)

we M

rame MUHUMyM OepeTcsi IO BCeM BO3MOXHBIM IpencrtaB/ieHusiM (7.20).

B ciayuae CHMMETPUYECKOTO MPOCTpAaHCTBA pas3JjiiuHble 30HaJibHble sApa
Z, (p, Q) TOPOKAAIOT pas3yHYHble YHHTapHbIe NpefcraBjaexus. B stom ciay-
yae pasJgoxenue (7,20) eOUHCTBEHHO.

3aMeTuM elle, 4To TOT (pakr, uto paawl (7,20), yaoBJeTBOPSAIOIIHE YCJAO-
BHUIO (7.21), 0oOpasyloT KOJBLO, MOJHOE NpH OTpefeseHHd HOpMbl (7.22),
NETKO HETIOCPEACTBEHHO YCMOTPETb M3 TOro, YTO Z, MOXKHO paccMaTpuBaTh
KaK eIUHHLbl HEKOTOPOH aJjredpbl, obJagaloline CBOUCTBOM

Zy.(p’ q'2,(p, q) = 20:'“ Z, (e, ve M),
&

rae CopaBa CTOMT KOHEYHas CyMMa, a|4ucaa ¢,, BCe HEOTPHUATE/bHBI

H YIOBJAETBOPAIT YC/JOBHIO

?wa: 1.
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Combinatorial applications

Properties of Krein parameters:

@ Krein conditions

@ Absolute bounds
are used to rule out existence of certain putative strongly regular
graphs.

See Brouwer’s database of strongly regular graphs.
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Coherent configuration = coherent algebra

A C-subspace A C M, (C) is called a coherent algebra if
@ closed under matrix product,
elcA,
@ closed under entrywise product,
@ J e A (Jistheall-ones matrix),
@ closed under conjugate-transpose .
= 3{A; | i € A}: basis of A, (0,1)-matrices, with

Y Ai=J, {A;|i€A}={A] |i€A}.

1EA

The trivial coherent algebra: (I, J), M, (C).
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Nontrivial examples

Strongly regular graphs provide nontrivial examples of coherent
algebras.

Let A be the adjacency matrix of an undirected graph G. Then
the 3-dimensional vector space

A=(I,A,J—1— A)

is a (commutative) coherent algebra if and only if G is a strongly
regular graph, i.e.,

AJ = kJ,
A2 =kKI+ XA+ u(J —1— A)

for some k, A\, u.
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Another nontrivial examples

A projective plane (P, £) is an incidence structure consists of
points P, lines L with incidence relation between them,
satisfying certain axioms. It can be described by a set of
matrices whose rows and columns are indexed by P U L:

7(s )
(05 0000,
(6 %) 7o) (arr o)+ (5w o)
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Commutative association schemes

M,(C) D A= (A;|i€A)=(PCE..
E,L'Ej = dijEi.
1
EioE; = — > ¢k E;.
k

The scalars qu are called Krein parameters. Krein condition
asserts qu > 0. To see this, it suffices to invoke

Let A, B € M, (C) be Hermitian matrices. If A, B > 0, then
AoB > 0.

A ® B > 0 and it contains A o B as a principal submatrix. [ l
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We could begin with a commutative algebra
A= (A;|i€A)
defined by structure constants:
k
With modest hypothesis, it has decomposition
A - @CE’L, E,LEJ = é}jE,-.

Define o by A; o A; = 4;;A; (and extend by linearity). Define
k
q;; by

EioE; =) q}E;.
k

If qu > 0 fails, then A cannot be a coherent algebra (there
cannot be a coherent algebra with structure constants pfj).
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Non-commutative case

Let A be a (not necessarily commutative) coherent algebra.
M,(C) D A=EHZ; (minimal two-sided ideals),

T, = M, (C) (x-isomorphic)
T, = AE; A = AE; (central idempotents)

Let P(-) denote the subset of Hermitian positive semidefinite
matrices:
P()={Z2¢€-|Z =0}

Krein condition (for coherent configurations) asserts
VF € P(Z;), VF' € P(Z;), FoF' =0

or equivalently (F o F")E;, € P(Zs) for all k.
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Non- case

Let A be a (not necessarily commutative) coherent algebra.
M,(C) D A=EHZ; (minimal two-sided ideals),

Z, =2 M., (C) =C (x-isomorphic)
T, = AE; A= AE; = CE; (central idempotents)

Let P(-) denote the subset of Hermitian positive semidefinite
matrices:
P()={Z2¢€-|Z =0}

Krein condition (for coherent configurations) asserts

or equivalently (F o F")E;, € P(Zs) for all k.
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commutative fiber-commutative
(central) primitive basis of
idempotents matrix units
matrix of
Krein parameters Krein parameters
k k

essentially unique

Krein condition

a; >0

Krein condition

absolute bound

gk, 0 Tk < m;m;

absolute bound

> i My rank Qf’j < m;m;
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Recall, for a projective plane,

P L
P x =*
L\ *x x)°
In general,
Air | Agz | *
A= Aoy | Ago | * = @A'L_’] = @Ika I, = Mek(c)°
* * * 8,3 k

We say A is fiber-commutative if A;; is commutative for all 4.
Lemma (Hobart—Williford, 2014)

We have Z;, = @i’ i Tk N A,;. Moreover, if A is
fiber-commutative, then dimZ,, N A;; = 0 or 1 for all <, j, k.
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To avoid cumbersome notation, we fix Z = Zy,. Let E be the
corresponding central idempotent:

T=AFEA= AE.
Since T = M, (C) (x-isomorphic) for some e, Z has a basis of
matrix units {e;; }:
€ij€ke = djkez'l-
Then
P(T) = {D_ zijei; | (215) € P(M(C))}.

i,
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To avoid cumbersome notation, we fix Z = Zy,. Let E be the
corresponding central idempotent:

T=AFEA= AE.
Since T = M, (C) (x-isomorphic) for some e, Z has a basis of
matrix units {e;; }:
€ij€ke = djkez'l-
Then
P(T) = {D_ zijei; | (215) € P(M(C))}.

i,

Krein condition asserts (in particular)

VF,F’ € P(I), (Fo F')E € P(T).
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A=PA;, T=(e; |1<1,5<e)

Lemma (Hobart—-Williford, 2014)

We have Z;, = EBZ.’J. I, N A;;. Moreover, if A is
fiber-commutative, thendimZ,, N A;; = 0 or1 forall<,j.

Since

€ij€re = O;jkEip,

AijAre C kA,

we may assume without loss of generality e;; € A;;. So,

k| k| sk €11 | €12 0
@ A"'J =%k |%|%x]|D 7T = €21 | €22 0
i.j * | k| % 0 0|0
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P(I) =1{);;zijeij | (zi) € P(Mc(C))}

For FF =3 z;je;;, F' = }_ zj;e;; € P(Z), Krein condition
asserts
(F o F')E > 0.

Since e;; € A;; and A;j o Ay = 0if (4, 5) # (k, £),
e;joe =0 if(i,5) # (k,0).
Since A;;E = EA;; C A;; N T = Ceyj,
(e;j o e;;)E = q;je;; forsome gq;; € C.

(FoF)E = ((Y ziei5) o (Y #iei5) ) B
=) zijZdijei
=> (Z o Z' 0 Q)ijei

where Z = (z;), Z' = (2};), Q = (i)

Thus

Akihiro Munemasa (Tohoku University) Krein conditions Yekaterinburg, 2019



P(I) =1{);;zijeij | (zi) € P(Mc(C))}

Recall Q = (q”) is defined by (eij (o) eij)E = (;j€;;-

(FoF)E =0 (VF,F' € P(T))
< ZoZ'oQ=»0 (VZ,Z' € P(M.(C)))
<~ Q >~ 0.

Note J o J o Q = Q. This explains Hobart’s observation:

In our applications ..., we use Z = Z' = ¢s(J),
where J is the all 1s matrix. Other choices do not
produce any new results for these particular examples.

Linear Algebra Appl. 226/228 (1995), p. 502.
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For a fiber-commutative coherent algebra A = @, I, where
T, = AE, & M., (C) = (ef; | 1 < 4,5 < ex), Krein condition
(FoF)E, =0 (VF € P(L;), VF' € P(I;))

is equivalent to
Qf = 0,

where ij is the “matrix of Krein parameters” defined by

. : 1
e, oe, = %Y emes .
m £m Scalarg(Q”) m=eim

Moreover, ij is essentially unique.
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Q" is essentially unique

Indeed, a basis of matrix units {efj |1 <i,5 < e} for
T, = M., (C) is essentially unique, since

dlm.Aw NZ,=0or1.

Uniqueness is up to scalar multiplication by a complex number

of absolute value 1.
This results in the uniqueness of ij up to entrywise
multiplication by a rank-one hermitian matrix:

(o)~ ©)=6 oo a)

Thank you very much for your attention!

Krein conditions Yekaterinburg, 2019 18/18

Akihiro Munemasa (Tohoku University)



