Krein parameters of fiber-commutative coherent configurations

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

joint work with Keiji Ito arXiv:1901.11484

June 27, 2019
The 9th Slovenian International Conference on Graph Theory
Bled, Slovenia

Association schemes

X: a finite set.

$$X imes X = igcup_{i=0}^d R_i$$
 (disjoint), $A_i = ext{adjacency matrix of } R_i,$ $\mathcal{A} = ext{linear span of } A_0, A_1, \ldots, A_d,$

Commutative association scheme:

$$A_0=I,$$
 $\mathcal{A}= rac{\mathsf{commutative}}{\mathsf{closed}} ext{ subalgebra of } M_n(\mathbb{C})$

$$A_i A_j = \sum_{k=0}^d p_{ij}^k A_k, \,\, E_i \circ E_j = rac{1}{|X|} \sum_{k=0}^d q_{ij}^k E_k.$$

Krein parameters: q_{ij}^k which are nonnegative.

2/10

Association schemes

X: a finite set.

$$X imes X = igcup_{i=0}^d R_i$$
 (disjoint), $A_i = ext{adjacency matrix of } R_i,$ $\mathcal{A} = ext{linear span of } A_0, A_1, \dots, A_d,$

association scheme:

$$A_0=I,$$
 $\mathcal{A}= ext{ subalgebra of }M_n(\mathbb{C})$ closed under transposition

$$A_i A_j = \sum_{k=0}^d p_{ij}^k A_k, \; E_i
ceil^* \circ E_j
ceil^* = rac{1}{|X|} \sum_{k=0}^d q_{ij}^k E_k
ceil^*.$$

Krein parameters: q_{ij}^k ?

Coherent configuration

$$X imes X = igcup_{i=0}^d R_i$$
 (disjoint), $A_i = ext{adjacency matrix of } R_i,$ $\mathcal{A} = ext{linear span of } A_0, A_1, \ldots, A_d,$

Coherent configuration:

$$A_0=I$$
 not assumed, $\mathcal{A}=$ subalgebra of $M_n(\mathbb{C})$ closed under transposition

$$A_iA_j=\sum_{k=0}^d p_{ij}^kA_k.$$

Coherent configuration

$$X imes X = igcup_{i=0}^d R_i$$
 (disjoint), $A_i = ext{adjacency matrix of } R_i,$ $\mathcal{A} = ext{linear span of } A_0, A_1, \ldots, A_d,$

Coherent configuration:

$$A_0=I$$
 not assumed, $\mathcal{A}=$ subalgebra of $M_n(\mathbb{C})$ closed under transposition

$$A_iA_j=\sum_{k=0}^d p_{ij}^kA_k.$$

Krein parameters?

Coherent configuration

$$X imes X = igcup_{i=0}^d R_i$$
 (disjoint), $A_i = ext{adjacency matrix of } R_i,$ $\mathcal{A} = ext{linear span of } A_0, A_1, \ldots, A_d,$

Coherent configuration:

$$A_0=I$$
 not assumed, $\mathcal{A}=$ subalgebra of $M_n(\mathbb{C})$ closed under transposition

$$A_iA_j=\sum_{k=0}^d p_{ij}^kA_k.$$

Krein parameters? Theory is analogous for fiber-commutative

3/10

Summary of results

	commutative	fiber-commutative
	association	coherent
	scheme	configuration
2nd	primitive	basis of
basis	idempotents	matrix units
Krein	scalars	matrices
parameters	q_{ij}^k	Q_{ij}^k
	unique	essentially unique
Krein condition	$q_{ij}^k \geq 0$	$Q_{ij}^k \succeq 0$
absolute	$\sum_{\substack{q_{ij}^k eq 0}} m_k \\ \leq m_i m_j$	$\sum_k m_k \operatorname{rank} Q_{ij}^k \ \leq m_i m_j$
bound	$\leq m_i m_j$	$\leq m_i m_j$

The adjacency algebra of a coherent configuration is called a coherent algebra, characterized by the properties:

- closed under ordinary mult., Hadamard mult., transposition,
- \bullet contains I, J.

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_k \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

The adjacency algebra of a coherent configuration is called a coherent algebra, characterized by the properties:

- closed under ordinary mult., Hadamard mult., transposition,
- \bullet contains I, J.

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_k \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

 $\mathcal{A}_{\alpha\beta}\mathcal{A}_{\lambda\mu}\subseteq\delta_{\beta\lambda}\mathcal{A}_{\alpha\mu},\quad\mathcal{A}_{\alpha\beta}$ is a left $\mathcal{A}_{\beta\beta}$ -module.

The adjacency algebra of a coherent configuration is called a coherent algebra, characterized by the properties:

- closed under ordinary mult., Hadamard mult., transposition,
- \bullet contains I, J.

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_k \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

$$\mathcal{A}_{\alpha\beta}\mathcal{A}_{\lambda\mu}\subseteq\delta_{\beta\lambda}\mathcal{A}_{\alpha\mu},\quad\mathcal{A}_{\alpha\beta}$$
 is a left $\mathcal{A}_{\beta\beta}$ -module.

This implies

$$\mathcal{I}_k = igoplus_{lpha,eta} \mathcal{I}_k \cap \mathcal{A}_{lphaeta}.$$

The adjacency algebra of a coherent configuration is called a coherent algebra, characterized by the properties:

- closed under ordinary mult., Hadamard mult., transposition,
- \bullet contains I, J.

$$\mathcal{A} = \left(egin{array}{c|c|c} rac{\mathcal{A}_{11}}{\mathcal{A}_{21}} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & rac{\mathcal{A}_{22}}{*} & * \ \hline \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_k \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

$$\mathcal{A}_{\alpha\beta}\mathcal{A}_{\lambda\mu}\subseteq\delta_{\beta\lambda}\mathcal{A}_{\alpha\mu},\quad\mathcal{A}_{\alpha\beta}$$
 is a left $\mathcal{A}_{\beta\beta}$ -module.

This implies

$$\mathcal{I}_k = igoplus_{lpha,eta} \mathcal{I}_k \cap \mathcal{A}_{lphaeta}.$$

Fiber commutative, i.e., all $\mathcal{A}_{\alpha\alpha}$ are commutative $\implies \dim \mathcal{I}_k \cap \mathcal{A}_{\alpha\beta} = 0$ or 1, by Hobart–Williford (2014).

Basis of a fiber-comm. coherent algebra

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{k} \mathcal{I}_{k}, \quad \mathcal{I}_{k} \cong M_{e_{k}}(\mathbb{C}).$$

Basis of a fiber-comm. coherent algebra

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{oldsymbol{k}} \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

Fix k. Since

$$\mathcal{I}_k = igoplus_{lpha,eta} \mathcal{I}_k \cap \mathcal{A}_{lphaeta}$$

and each summand has dimension 0 or 1, \mathcal{I}_k has a basis $\{e_{\alpha\beta}\}$ where (α,β) runs through the set

$$\{(\alpha,\beta)\mid \dim \mathcal{I}_k\cap \mathcal{A}_{\alpha\beta}=\mathbf{1}\}$$

Basis of a fiber-comm. coherent algebra

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{k} \mathcal{I}_{k}, \quad \mathcal{I}_{k} \cong M_{e_{k}}(\mathbb{C}).$$

Fix k. Since

$$\mathcal{I}_k = igoplus_{lpha,eta} \mathcal{I}_k \cap \mathcal{A}_{lphaeta}$$

and each summand has dimension 0 or 1, \mathcal{I}_k has a basis $\{e_{\alpha\beta}\}$ where (α,β) runs through the set

$$\{(\alpha,\beta) \mid \dim \mathcal{I}_k \cap \mathcal{A}_{\alpha\beta} = \mathbf{1}\}$$

which is of the form $\Lambda \times \Lambda$ for some index set Λ , so that

$$\mathcal{I}_k \cong M_{\stackrel{lack}{\Lambda}}(\mathbb{C}), \quad ext{i.e., } e_{lphaeta}e_{\lambda\mu} = \delta_{eta\lambda}e_{lpha\mu}.$$

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{oldsymbol{k}} \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

$$\mathcal{I}_k \cong M_{\stackrel{lack}{\Lambda}}(\mathbb{C}), \quad ext{i.e., } e_{lphaeta}e_{\lambda\mu} = \delta_{eta\lambda}e_{lpha\mu}.$$

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{oldsymbol{k}} \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

$$\mathcal{I}_k \cong M_{\stackrel{lack}{\Lambda}}(\mathbb{C}), \quad ext{i.e., } e_{lphaeta}e_{\lambda\mu} = \delta_{eta\lambda}e_{lpha\mu}.$$

If dim
$$\mathcal{I}_k = 1$$
, then $|\Lambda| = 1$, $\Lambda = \{\alpha\}$, then writing $e = e_{\alpha\alpha}$, $e \circ e = (\text{const.})(q_{kk}^k e + \cdots)$.

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{m{k}} \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

$$\mathcal{I}_k \cong M_{\stackrel{ullet}{\Lambda}}(\mathbb{C}), \quad ext{i.e., } e_{lphaeta}e_{\lambda\mu} = \delta_{eta\lambda}e_{lpha\mu}.$$

If
$$\dim \mathcal{I}_k = 1$$
, then $|\Lambda| = 1$, $\Lambda = \{\alpha\}$, then writing $e = e_{\alpha\alpha}$, $e \circ e = (\text{const.})(q_{bb}^k e + \cdots)$.

In general,
$$\dim \mathcal{I}_k = |\Lambda|^2 \geq 1$$
, so

$$e_{lphaeta}\circ e_{lphaeta}=(\mathsf{const.})((Q_{kk}^k)_{lphaeta}e_{lphaeta}+\mathsf{other}~\mathcal{I}_{k'})$$

$$\mathcal{A} = \left(egin{array}{c|c|c} rac{\mathcal{A}_{11}}{\mathcal{A}_{21}} & \mathcal{A}_{12} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{k} \mathcal{I}_{k}, \quad \mathcal{I}_{k} \cong M_{e_{k}}(\mathbb{C}).$$

$$\mathcal{I}_k \cong M_{\stackrel{lack}{\Lambda}}(\mathbb{C}), \quad ext{i.e., } e_{lphaeta}e_{\lambda\mu} = \delta_{eta\lambda}e_{lpha\mu}.$$

If
$$\dim \mathcal{I}_k = 1$$
, then $|\Lambda| = 1$, $\Lambda = \{\alpha\}$, then writing $e = e_{\alpha\alpha}$, $e \circ e = (\text{const.})(q_{bb}^k e + \cdots)$.

In general,
$$\dim \mathcal{I}_k = |\Lambda|^2 \geq 1$$
, so

$$e_{lphaeta}\circ e_{lphaeta}=(ext{const.})((Q_{kk}^k)_{lphaeta}e_{lphaeta}+ ext{other }\mathcal{I}_{k'})$$

$$Q_{kk}^k=(Q_{kk}^k)_{lpha,eta\in\Lambda}\in M_\Lambda(\mathbb{C}).$$

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{lpha,eta} \mathcal{A}_{lphaeta} = igoplus_{m{k}} \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

Fix k. \mathcal{I}_k has a basis $\{e_{\alpha\beta} \mid \alpha, \beta \in \Lambda\}$,

$$\mathcal{I}_k \cong M_{\stackrel{lack}{\Lambda}}(\mathbb{C}), \quad ext{i.e., } e_{lphaeta}e_{\lambda\mu} = \delta_{eta\lambda}e_{lpha\mu}.$$

If dim $\mathcal{I}_k = 1$, then $|\Lambda| = 1$, $\Lambda = {\alpha}$, then writing $e = e_{\alpha\alpha}$,

$$e \circ e = (\text{const.})(q_{kk}^k e + \cdots).$$

In general, $\dim \mathcal{I}_k = |\Lambda|^2 \geq 1$, so

$$e_{lphaeta}\circ e_{lphaeta}=(ext{const.})((Q_{kk}^k)_{lphaeta}e_{lphaeta}+ ext{other }\mathcal{I}_{k'})$$

$$Q_{kk}^k=(Q_{kk}^k)_{lpha,eta\in\Lambda}\in M_\Lambda(\mathbb{C}).$$

Similarly, we can define Q_{ij}^k (matrix of Krein parameters).

Krein condition

Let $\mathcal{P}(\cdot)$ denote the subset of positive semidefinite Hermitian matrices:

$$\mathcal{P}(\cdot) = \{Z \in \cdot \mid Z \succeq 0\}.$$

Krein condition

Let $\mathcal{P}(\cdot)$ denote the subset of positive semidefinite Hermitian matrices:

$$\mathcal{P}(\cdot) = \{ Z \in \cdot \mid Z \succeq 0 \}.$$

Krein condition (for coherent configurations) asserts

$$\forall F \in \mathcal{P}(\mathcal{I}_i), \ orall F' \in \mathcal{P}(\mathcal{I}_j), \ F \circ F' \succeq 0$$

or equivalently $(F \circ F')E_k \in \mathcal{P}(\mathcal{I}_k)$ for all k, where $E_k : \mathcal{A} \to \mathcal{I}_k$ is the orthogonal projection.

Krein condition

Let $\mathcal{P}(\cdot)$ denote the subset of positive semidefinite Hermitian matrices:

$$\mathcal{P}(\cdot) = \{Z \in \cdot \mid Z \succeq 0\}.$$

Krein condition (for coherent configurations) asserts

$$\forall F \in \mathcal{P}(\mathcal{I}_i), \ \forall F' \in \mathcal{P}(\mathcal{I}_j), \ F \circ F' \succeq 0$$

or equivalently $(F \circ F')E_k \in \mathcal{P}(\mathcal{I}_k)$ for all k, where $E_k : \mathcal{A} \to \mathcal{I}_k$ is the orthogonal projection. For a fixed k, we have chosen a basis $\{e_{\alpha\beta} \mid \alpha, \beta \in \Lambda\}$ so that

$$\mathcal{P}(\mathcal{I}_k) = \{ \sum_{lpha,eta} z_{lphaeta} e_{lphaeta} \mid (z_{lphaeta}) \in \mathcal{P}(M_{\Lambda}(\mathbb{C})) \}.$$

Theorem

For a fiber-commutative coherent algebra $\mathcal{A}=\bigoplus_k \mathcal{I}_k$, where $\mathcal{I}_k=\mathcal{A}E_k\cong M_{\Lambda}(\mathbb{C})=\langle e_{\alpha\beta}^k\mid \alpha,\beta\in\Lambda
angle$, Krein condition

$$(F \circ F')E_k \succeq 0 \quad (\forall F \in \mathcal{P}(\mathcal{I}_i), \ \forall F' \in \mathcal{P}(\mathcal{I}_j))$$

is equivalent to

$$Q_{ij}^k \succeq 0$$
,

where Q_{ij}^k is the "matrix of Krein parameters" defined by

$$e^i_{lphaeta}\circ e^j_{lphaeta}=rac{1}{ extsf{scalar}}{\sum_k}(Q^k_{ij})_{lphaeta}e^k_{lphaeta}.$$

Bled, 2019

9/10

Moreover, Q_{ij}^k is essentially unique.

Theorem

For a fiber-commutative coherent algebra $\mathcal{A}=\bigoplus_k \mathcal{I}_k$, where $\mathcal{I}_k=\mathcal{A}E_k\cong M_{\Lambda}(\mathbb{C})=\langle e_{\alpha\beta}^k\mid \alpha,\beta\in\Lambda
angle$, Krein condition

$$(F \circ F')E_k \succeq 0 \quad (\forall F \in \mathcal{P}(\mathcal{I}_i), \ \forall F' \in \mathcal{P}(\mathcal{I}_j))$$

is equivalent to

$$Q_{ij}^k \succeq 0$$
,

where Q_{ij}^k is the "matrix of Krein parameters" defined by

$$e^i_{lphaeta}\circ e^j_{lphaeta}=rac{1}{\mathsf{scalar}}{\sum_k}(Q^k_{ij})_{lphaeta}e^k_{lphaeta}.$$

Moreover, Q_{ij}^k is essentially unique.

If time permits, I will prove the special case; otherwise, thank you for listening. This is the end.

9/10

$$\mathcal{P}(\mathcal{I}_k) = \{\sum z_{lphaeta}e_{lphaeta} \mid (z_{lphaeta}) \in \mathcal{P}(M_\Lambda(\mathbb{C}))\}.$$
 Recall $Q = Q_{kk}^k = (q_{lphaeta})$ is defined by $egin{aligned} &(e_{lphaeta}\circ e_{lphaeta})E_k = q_{lphaeta}e_{lphaeta}. \end{aligned} \ &(F\circ F')E_k\succeq 0 \quad (orall F,F'\in\mathcal{P}(\mathcal{I}_k)) \ &\iff \left((\sum z_{lphaeta}e_{lphaeta})\circ(\sum z'_{lphaeta}e_{lphaeta})\right)E_k\succeq 0 \ &(orall (z_{lphaeta}),(z'_{lphaeta})\in\mathcal{P}(M_\Lambda(\mathbb{C}))) \ &\iff \sum z_{lphaeta}z'_{lphaeta}(e_{lphaeta}\circ e_{lphaeta})E_k\succeq 0 \ &(orall (z_{lphaeta}),(z'_{lphaeta})\in\mathcal{P}(M_\Lambda(\mathbb{C}))) \ &\iff Z\circ Z'\circ Q\succeq 0 \quad (orall Z,Z'\in\mathcal{P}(M_\Lambda(\mathbb{C}))) \end{aligned}$

$$\mathcal{P}(\mathcal{I}_k) = \{\sum z_{lphaeta}e_{lphaeta} \mid (z_{lphaeta}) \in \mathcal{P}(M_\Lambda(\mathbb{C}))\}.$$
 Recall $Q = Q_{kk}^k = (q_{lphaeta})$ is defined by $(e_{lphaeta}\circ e_{lphaeta})E_k = q_{lphaeta}e_{lphaeta}.$ $(F\circ F')E_k\succeq 0 \quad (orall F,F'\in\mathcal{P}(\mathcal{I}_k))$ $\iff \left((\sum z_{lphaeta}e_{lphaeta})\circ(\sum z'_{lphaeta}e_{lphaeta})
ight)E_k\succeq 0 \quad (orall (z_{lphaeta}),(z'_{lphaeta})\in\mathcal{P}(M_\Lambda(\mathbb{C})))$ $\iff \sum z_{lphaeta}z'_{lphaeta}(e_{lphaeta}\circ e_{lphaeta})E_k\succeq 0 \quad (orall (z_{lphaeta}),(z'_{lphaeta})\in\mathcal{P}(M_\Lambda(\mathbb{C})))$ $\iff Z\circ Z'\circ Q\succeq 0 \quad (orall Z,Z'\in\mathcal{P}(M_\Lambda(\mathbb{C})))$

$$\mathcal{P}(\mathcal{I}_k) = \{\sum z_{lphaeta}e_{lphaeta} \mid (z_{lphaeta}) \in \mathcal{P}(M_\Lambda(\mathbb{C}))\}.$$
 Recall $Q = Q_{kk}^k = (q_{lphaeta})$ is defined by $(e_{lphaeta} \circ e_{lphaeta})E_k = q_{lphaeta}e_{lphaeta}.$ $(F \circ F')E_k \succeq 0 \quad (orall F, F' \in \mathcal{P}(\mathcal{I}_k))$ $\iff \left((\sum z_{lphaeta}e_{lphaeta}) \circ (\sum z'_{lphaeta}e_{lphaeta})\right)E_k \succeq 0$ $(orall (z_{lphaeta}), (z'_{lphaeta}) \in \mathcal{P}(M_\Lambda(\mathbb{C})))$ $\iff \sum z_{lphaeta}z'_{lphaeta}(e_{lphaeta} \circ e_{lphaeta})E_k \succeq 0$ $(orall (z_{lphaeta}), (z'_{lphaeta}) \in \mathcal{P}(M_\Lambda(\mathbb{C})))$ $\iff Z \circ Z' \circ Q \succeq 0 \quad (orall Z, Z' \in \mathcal{P}(M_\Lambda(\mathbb{C})))$ $\iff Q \succeq 0.$

$$\mathcal{P}(\mathcal{I}_k) = \{\sum z_{lphaeta}e_{lphaeta} \mid (z_{lphaeta})\in \mathcal{P}(M_{\Lambda}(\mathbb{C}))\}.$$
 Recall $Q=Q_{kk}^k=(q_{lphaeta})$ is defined by $(e_{lphaeta}\circ e_{lphaeta})E_k=q_{lphaeta}e_{lphaeta}.$ $(F\circ F')E_k\succeq 0 \quad (orall F,F'\in \mathcal{P}(\mathcal{I}_k))$ $\iff Z\circ Z'\circ Q\succeq 0 \quad (orall Z,Z'\in \mathcal{P}(M_{\Lambda}(\mathbb{C})))$ $\iff Q\succeq 0.$

Note $J \circ J \circ Q = Q$. This explains Hobart's observation:

In our applications ..., we use $\mathbf{Z} = \mathbf{Z}' = \phi_s(\mathbf{J})$, where \mathbf{J} is the all 1s matrix. Other choices do not produce any new results for these particular examples.

Linear Algebra Appl. 226/228 (1995), p. 502.

10/10