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History (Amin = smallest eigenvalue)

t|l>no]o Armin [CT/; 1/ /®C(§t) 1t /t):| = ma(A = CC7).

@ Hoffman (SIAM, 1969) stated a theorem (Hoffman’s limit
theorem), “is shown in [4]” where [4]=Hoffman & Ostrowski,
“to appear” was never published.

@ Hoffman (LAA, 1977), citing above, proved a theorem about
graphs with Apin € (=2, —1) and Amin € (=1 — V2, -2).

@ Jang—Koolen—M.—Taniguchi (AMC, 2014) gave a graph
theoretic proof.

@ Hoffman (Geom. Ded. 1977), proved signed graph version
of the limit theorem.
Today, we give a Hermitian matrix version of the limit theorem
and an application to signed graphs with Ay, € (=2, —1).
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What is the spectrum of a graph

The spectrum of a graph means the multiset of eigenvalues of

its adjacency matrix.
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The smallest eigenvalue of a graph

Denote by Amin(-) the smallest eigenvalue of a matrix or a graph.
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Shortcut (?)

min{z|(z+2)—1t(zz+z):0}—>min{z|z+2:0}: -2
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Hurwitz’s theorem

Rahman & Schmeisser, “Analytic Theory of Polynomials,”
Theorem 1.3.8

Let ()32, be a sequence of analytic functions defined in a
region 2 C C. Suppose

fi—=f#£0 (t— o0)

uniformly on every compact subset of Q. Then for ¢ € Q, the
following are equivalent:
@ (is a zero of f of multiplicity m,
@ (¢ € 3U C Q (neighbourhood), Ve > 0, 3ny < Vt, f; has
exactly m zeros in the e-neighbourhood of (.
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Theorem (Hoffman’s limit theorem)

Let
A C
CT 0

be the adjacency matrix of a graph. Then

A C®1;

- . v (A AT
tlLTo Amin [CT 1] 1®(J— /t):| = Amin(A—CC7).
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which has \nin = —2. Note

0 O 1;
Amin | O 0 1; > —2.
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Cameron—Goethals—Seidel-Shult (1976)

Every graph with \mi, > —2 can be represented by a root
system of type A,, D, or Eg, E7, Es.

o 0 1
A=10 0 1 |. Amn(A)>-2.
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M= 1 1 , MMT = A+ 2l
1

Row vectors of M are in the root system D,.
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Proof of Hoffman’s limit theorem

A C®1; A tC
tI|m Amin {CT ®1] 1@ (J— It)] |_> M Amin {CT (t— 1)/}
Since — on blackboard
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the spectrum containing Amin — Spec(A — CC").
Amin = Amin(A — CC"), proving the theorem.
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The same proof shows the Hermitian matrix version:

Theorem
Let

& o

be a Hermitian matrix, and let D be a positive definite Hermitian
matrix. Then

T A cet
tll—[Do)\mm |:C*®1;I' D®(Jt—lt)

} = Amin(A — CD™'C).
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A signed graph is a graph with edge weight +1 or —1. The
adjacency matrix is then a (0, £1) matrix.

@ Switching equivalence = conjugation by a (0, 4+1) monomial
matrix

@ §(G) := minimum degree of G.

There exists a function f : (—2,—1) — R such that, for each
M € (—2,—1), if Gis a connected signed graph with Apin(G) > A,
d(G) > f(N), then G is switching equivalent to a complete graph.

The proof is a simplification of Hoffman’s original by
incorporating Cameron—Goethals—Seidel-Shult (1976),
Greaves—Koolen—M.—Sano—Taniguchi (2015).
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Proof (part 1)

Fix A € (=2, —1). To prove this theorem, it suffices to show that,

)\min(G) Z A

5(G) sufficiently large Gis sw. eq. K.

By Cameron—Goethals—Seidel-Shult (1976), we may assume G
is represented by A, or D, (ignoring Eg, E7, Eg).

But A,, € Dpi4, SO
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Proof (part 2)

Amin(G) Z A

J(G) sufficiently large = Gis sw. eq. K.

G is represented by D,
Greaves—Koolen—M.—Sano—-Taniguchi (2015) classified such
signed graphs. In particular,

Let G be a connected signed graph represented by D,, and
Amin(G) > —2. Then there exists a tree T such that the line
graph L(T) of T is switching equivalent to G with possibly one
vertex removed.

Here we illustrate the proof when G — u is sw. eq. to L(T).
— on blackboard
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Recall the Hermitian adjacency matrix H = H(A) of a digraph A:

1 ifx=y
i ifx—y
—i ifx<+y
0 otherwise

There exists a function f: (-2, —1) — R such that, for each
A € (=2,-1),if A is a connected digraph with Amin(H(A)) > A,
d(A) > f(X\), then A is switching equivalent to a complete graph.

@ Switching equivalence = conjugation by a (0, =1, +/)
monomial matrix, and possibly taking the transpose

@ §(A) := minimum degree of the underlying undirected graph
of A.
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Theorem

There exists a function f: (-2, —1) — R such that, for each
A€ (—2,-1),
@ for connected signed graph G, Amin(G) > A,
(G) > f(\) = Gsw.eq. K.
@ for connected digraph A, Amin(H(A)) > A,
§(A) > f(\) = A sw. eq. K.

The digraph version is immediate from signed graph version by
considering the associated signed graph:
B" A

H(D) = A+ iB (A:AT,B:—BT):A(G):{A B}

@ Spec H(A)*2 = Spec G, s0 AminH(A) = Amin G-
@ H(A) =4(G).
Further results yet to be generalized: Hoffman (1977):

(-1 —v/2,—-2), Woo & Neumaier (1995).
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The idea of associated signed graph comes from

@ Masaaki Kitazume and A. M., Even unimodular Gaussian
lattices of rank 12, J. Number Theory (2002).

Gaussian lattices of rank 12 «— Euclidean lattices of rank 24

A digraph with n vertices — its associated signed graph has 2n
vertices:

H(A) = A+ iB (A:AT,B:—BT):>A(G):{A B]

B" A

Given a signed adjacency matrix S of order 2n, find a hermitian
matrix H = A+ iB of order n such that S is switching equivalent

to
A B
B" A
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