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By a set of equiangular lines with angle arccos o in R, we mean
{Rx1,...,Rx,},
where X1, ..., X, € R? are unit vectors such that

((Xi, X)) =a (1 <i<j<n),

and
0<ax<x1.

Example: d =2, o =1/2, @ @
X, = (Cos — 2rk ,Sin %) =1,2,3)

Rk
yk:(cos%ﬁin?) (k=0,1,2)
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12 vertices of the Icosahedron = 6 lines

Example: d = 3, a = 1/1/5, six diagonals of the icosahedron

arccos(1/v/5) ~ 63°.
(illustration by Gary Greaves)
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Set of points in S~ = {x ¢ R? | ||x|| = 1}

Equiangular lines:
(Xi,x;)) =xa (1<i<j<n).
Maximize the number of lines n:
N,(d) = max{|X| | X C 8" | (x,y) = =a (¥x,y € X, x £ y)},
N(d) = max{N,(d) | 0 < a < 1}.

A similar problem is the sphere packing (kissing number)
problem:

7(d) =max{|X| | X € 8* [ (x,y) < 5 (Vx,y e X, x #y)}.

N —

N(2) = 3, 7(2) = 6 (hexagon)
N(3) = 6: Haantjes (1948).
7(8) = 12 (icosahedron): Schitte and van der Waerden (1953).
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The value o

N(2) = Ni2(2), N@B) =Ny 503
For d > 4, for which a € [0, 1), N(d) = N,(d) holds?

Theorem (Lemmens—Seidel, P. M. Neumann, 1973)

Suppose 3n equiangular lines with angle arccos o in RY.

1, :
n>2d — - is an odd integer > 3.

Is the hypothesis n > 2d restrictive? No.
a2 3 4| 5| 6|7-13 14
N() | 3| 6 6|10 | 16 28 ?
1/a|2 |5 |+VBor3| 3| 3 3|/30r5

N(d) = O(d?) (d — ).
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a = 1/3: Root systems

Suppose 3n equiangular lines with angle arccos(1/3) in R%. The
Gram matrix
G = ((xi, x;))

has diagonal = 1, off diagonal = + .
Let J denote the all-one matrix.

S=3(G- 1) (Seidel matrix): off diagonal = + 1
A= 1(J — 1+ S) (adjacency matrix): off diagonal = 0, 1

2
C—A+2I—1J+§G>O
B -2 2 —

C is the Gram matrix of a subset of a root system of type A, D, E.
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Van Lint—Seidel (1966):

d—1

a-1 L. 2
+1—da2 if 1 —da” > 0.

N, (d) <A1

d/3 4 5 6 7
Nis(d) |4 6 10 16 28

Lemmens—Seidel (1973):

arccos 1 ~ 70°

d/3 4 5 6 7-13 14 15 16—

Nis(d) |4 6 10 16 28 28 28  2(d—1)
N@d)|6 6 10 16 28 ? 36=Nis ?

Nijs(14) < % =305..., N;,(14)<19,....
Tremain (2008): 28 < Ny ,5(14).

Thus
28 < Ny;5(14) = N(14) < 30.
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N(14) = Ny /5(14) = 28 or 29 or 30.

Theorem (Greaves—Koolen—M.—Sz6118si, 2016)
N1/5(14) < 30.

So
N(14) = Ny 5(14) = 28 or 29.

Our method is not powerful enough to rule out 29.

Akihiro Munemasa Tohoku University

Shanghai, 2019



Ni/5(14)

Suppose 3n equiangular lines with angle arccos(1/5) in RY. The
Gram matrix

G = ((xi, x;))
has diagonal = 1, off diagonal = +{, rank G = d.

S=5(G—-1) (Seidel matrix): off diagonal = +1

1
A= E(J — 1+ S) (adjacency matrix): off diagonal = 0, 1

1 5
= = — -G >0.
C=A+3l 2J—|—2(3_0

C is the Gram matrix of a set of vectors of norm 3, with inner
products 0, 1, in R+,
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Root systems:
@ The set of vectors of a lattice generated by norm 2 vectors,
with inner products 0, +1.
@ Classified by Cartan, Killing, Witt.
@ Denoted by Ay (d > 2), Dy (d > 4), E4 (d =6,7,8).
Sets of vectors of norm 3 with inner products 0, £1 (no name)
@ Such a set generates an integral lattice.
@ Classification(?)

Theorem (Conway—Sloane, 1989)

Every integral lattice of rank r can be embedded in a unimodular
lattice of rank at most r + 3.

@ Classification of unimodular lattices is available for d < 25.
In particular, for rank (14 + 1) + 3 = 18.
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