Equiangular lines in Euclidean spaces

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

joint work with G. Greaves, J. Koolen, and F. Szöllősi September 28, 2019

Shanghai University

By a set of equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^d , we mean

$$\{\mathbb{R}\boldsymbol{x}_1,\ldots,\mathbb{R}\boldsymbol{x}_n\},\$$

where $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ are unit vectors such that

$$|(\boldsymbol{x}_i, \boldsymbol{x}_j)| = \alpha \quad (1 \leq i < j \leq n),$$

and

$$0 \le \alpha < 1$$
.

Example:
$$d = 2$$
, $\alpha = 1/2$, $\mathbf{x}_k = (\cos \frac{2\pi k}{3}, \sin \frac{2\pi k}{3})$ $(k = 1, 2, 3)$ $\mathbf{y}_k = (\cos \frac{\pi k}{3}, \sin \frac{\pi k}{3})$ $(k = 0, 1, 2)$

12 vertices of the Icosahedron = 6 lines

Example: d = 3, $\alpha = 1/\sqrt{5}$, six diagonals of the icosahedron

 $arccos(1/\sqrt{5}) \sim 63^{\circ}$.

3/10

(illustration by Gary Greaves)

Set of points in $S^{d-1} = \{ \boldsymbol{x} \in \mathbb{R}^d \mid ||\boldsymbol{x}|| = 1 \}$

Equiangular lines:

$$(\boldsymbol{x}_i, \boldsymbol{x}_j) = \pm \alpha \quad (1 \leq i < j \leq n).$$

Maximize the number of lines *n*:

A similar problem is the sphere packing (kissing number) problem:

$$\tau(d) = \max\{|X| \mid X \subseteq S^{d-1} \mid (\boldsymbol{x}, \boldsymbol{y}) \leq \frac{1}{2} \ (\forall \boldsymbol{x}, \boldsymbol{y} \in X, \ \boldsymbol{x} \neq \boldsymbol{y})\}.$$

$$N(2) = 3$$
, $\tau(2) = 6$ (hexagon)

N(3) = 6: Haantjes (1948).

 $\tau(3) = 12$ (icosahedron): Schütte and van der Waerden (1953).

Akihiro Munemasa Tohoku University Shanghai, 2019 4

The value α

$$N(2) = N_{1/2}(2), \quad N(3) = N_{1/\sqrt{5}}(3).$$

For $d \ge 4$, for which $\alpha \in [0, 1)$, $N(d) = N_{\alpha}(d)$ holds?

Theorem (Lemmens-Seidel, P. M. Neumann, 1973)

Suppose $\exists n$ equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^d .

$$n > 2d \implies \frac{1}{\alpha}$$
 is an odd integer ≥ 3 .

Is the hypothesis n > 2d restrictive? No.

d	2	3	4	5		7–13	14	
N(d)	3	6	6	10	16	28	?	
$1/\alpha$	2	$\sqrt{5}$	$\sqrt{5}$ or 3	3	3	3	3 or 5	

$$N(d) = \Theta(d^2) \quad (d \to \infty).$$

5/10

$\alpha = 1/3$: Root systems

Suppose $\exists n$ equiangular lines with angle $\arccos(\frac{1}{3})$ in \mathbb{R}^d . The Gram matrix

$$G = ((\boldsymbol{x}_i, \boldsymbol{x}_j))$$

has diagonal = 1, off diagonal = $\pm \frac{1}{3}$. Let *J* denote the all-one matrix.

$$S=\frac{3}{3}(G-I)$$
 (Seidel matrix): off diagonal $=\pm 1$ $A=\frac{1}{2}(J-I+S)$ (adjacency matrix): off diagonal $=0,1$ $C=A+2I=\frac{1}{2}J+\frac{3}{2}G\geq 0.$

C is the Gram matrix of a subset of a root system of type A, D, E.

Van Lint-Seidel (1966):

$$N_{\alpha}(d) \leq 1 + \frac{d-1}{1-d\alpha^2}$$
 if $1 - d\alpha^2 > 0$.

arccos $\frac{1}{3}\sim70^\circ$

7/10

Lemmens-Seidel (1973):

$$N_{1/5}(14) \le \frac{336}{11} = 30.5..., N_{1/7}(14) \le 19,....$$

Tremain (2008): $28 \le N_{1/5}(14)$.

Thus

$$28 \le N_{1/5}(14) = N(14) \le 30.$$

$$N(14) = N_{1/5}(14) = 28 \text{ or } 29 \text{ or } 30.$$

Theorem (Greaves-Koolen-M.-Szöllősi, 2016)

$$N_{1/5}(14) < 30.$$

So

$$N(14) = N_{1/5}(14) = 28 \text{ or } 29.$$

Our method is not powerful enough to rule out 29.

$N_{1/5}(14)$

Suppose $\exists n$ equiangular lines with angle $\arccos(1/5)$ in \mathbb{R}^d . The Gram matrix

$$G = ((\boldsymbol{x}_i, \boldsymbol{x}_j))$$

has diagonal = 1, off diagonal = $\pm \frac{1}{5}$, rank G = d.

$$S=5(G-I)$$
 (Seidel matrix): off diagonal = ± 1
 $A=\frac{1}{2}(J-I+S)$ (adjacency matrix): off diagonal = $0,1$
 $C=A+3I=\frac{1}{2}J+\frac{5}{2}G\geq 0$.

C is the Gram matrix of a set of vectors of norm 3, with inner products 0, 1, in \mathbb{R}^{d+1} .

9/10

Future work

Root systems:

- The set of vectors of a lattice generated by norm 2 vectors, with inner products $0, \pm 1$.
- Classified by Cartan, Killing, Witt.
- Denoted by A_d ($d \ge 2$), D_d ($d \ge 4$), E_d (d = 6, 7, 8).

Sets of vectors of norm 3 with inner products $0, \pm 1$ (no name)

- Such a set generates an integral lattice.
- Classification(?)

Theorem (Conway-Sloane, 1989)

Every integral lattice of rank r can be embedded in a unimodular lattice of rank at most r + 3.

• Classification of unimodular lattices is available for $d \le 25$. In particular, for rank (14 + 1) + 3 = 18.