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L(Kyg) denotes the line graph of the complete graph K.
Also known as the triangular graph T3, or Johnson graph

J(8,2).
n
Dy = {x €Z": Y x; € 2L}
1=1
The set of roots

R(Dy) = {permutations of ((£1)>0"2)}.

contains
{permutations of (12 On_Q)}

which can be regarded as the vertex set of L(K},).



ular lines and the absolute bound

@ Goethals—Seidel (1975) “The regular two-graph on
276 vertices” established the uniqueness (up to
complement)

@ Two-graph = Switching class of graphs

@ The regular two-graph on 276 = the switching class
of McL U Ky, where
McL = SRG(275,162,105,81) is the McLaughlin
graph.

@ Co.3> McL : 2, index= 270.

The number of equiangular lines in R? is bounded by the
absolute bound (Gerzon bound):

d(d+1)
-
This bound is known to be achieved for d = 2, 3, 7, 23,
and achievability is unknown in general for large d.

Some d were ruled out by Delsarte-Goethals—Seidel

(1977), Makhnev (2003), Bannai—-M.—Venkov (2004),
Nebe—-Venkov (2013).



Let I' = (V, E/) be a graph. Switching of " with respect
toU C VisTV = (V, EY), where

EU:{{x,y}EE:x,yEU}
U{{z,yt e E:z,yeV\U}
U{{z,y} ¢ F .- zecU, yeV\U}

The switching class of I' is
rv.v cvy.
The Seidel matrix S(I') of ' is
S(I')=J —1—2A(T"),

where A(I") is the adjacency matrix. Then switching
corresponds to the operation

ST — AS(T)A

where A is the diagonal matrix with &1 on the diagonal.



L Kg and Dgg Eg

A representation of norm m of a graph I' = (V, E/) means
an injective mapping V' — RY, 2+ u,, where
m ifx =y,
(g, uy) = 1 if {x,y} € E,

0 otherwise.

Such a representation exists if and only if its Gram matrix
A(I") +ml is positive semidefinite, or equivalently,

)\min(A) > —m.

For I' = L(Kg), Apin(I') = —2. It has a representation of
norm 2 as follows:
V = V(L(Ky))
:{6i+6]':1§’i<j§8}
— {permutations of (120" %)}
CDsCR

Forx,y € V,

T~y = (v,y) =1



1
r = 5(1, 1,1,1,1,1,1,1),
H={zeR®: (rz) =1}
Then

(r, 1) =2,
V={e+e; 1<i<j<8 CH

In fact, V U {r} is a part of the Eg root system,
HNEs=VU{r—z:zeV}.

(z,y) = {é = (z,r—y) = {(1)



Root systems and Seidel matrices of

lar envalue 3
Write {
E:u—§7° (ue V).
{+u:u eV}

gives a set of 28 equiangular lines in H = R
If, for a graph I' = (V| F),
@ {uy,:x € V}isa set of vectors of norm 2,
o (ryuy)=1forallx eV,
o (r,r)=2,
then replacing u, by » — u, corresponds to switching.
We call r a switching root of T'.

Suppose A\pin(I') > —2. Let =T« K;. TFAE
@ there exists a switching root of I'

~

o )\min(r> = =
Q@ \nax(S(I) < 3.

B(T) = [A(Fl)ﬁ = ;] — A(D) + 21

rank B(I") = rank(A(I") 4+ 27) + 1.



Equiangular lines with angle arccos1/3
— Seidel matrix S with 3/ — S > 0, i.e.,
)\max(s) <3
—  Graph I" with A, (1) > =2, ie,
AT)+21 >0
— Graph [" such that

[ has a representation of norm 2 in a root system.

Weren't they all known in 1970's?

N(d) = max. # equiangular lines in R
Ny (d) = max. # equiangular lines in R
with angle arccos(a)
N} (d) = max. # equiangular lines in R
with angle arccos(a), rank exactly d

Na(d) = max N(r).



Lemmens—Seidel (1973):

d 45167 8|---14

N(d) = Ny 3(d) |6 1016|2828 |- -- |28

Glazyrin—Yu (2018):
[5(d) <28 (8<d<11).
Lin—Yu (2020):
f/g(g) = 14 (achieved only by L(K2,7)>

Theorem (Cao—Koolen—-M.-Yoshino, 2021+)

10

d |4 516 7 >8

N7 /5(d)|6]10[16]28[2(d — 1)

The only bound-achieving Seidel matrices S(I") are
d 4 D § 7 >8

' L(Ko3)| L(K5) | L(Kg) U K1 | L(Kg) | L(K9 g_1)

1
E8 — D8 —|— §Z1,

Er ={u€Eg:(u,e1 —ep) =0},
Eg = {u € Eg: (u,e1 — e2) = (u,ex — e3) = 0}.
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Containment relations between root systems is as follows

(Cameron—Goethals—Seidel-Shult, 1978):

D,CDsC---,

E6 C E7 C Eg,

D¢ Z Eg,

D7 ¢ E7,

Dg C Eg,

E, ¢ D,/ for n and n'.

Let R =D,, or E,,. Fix r € R. Then
N={zeR:(rz)=1}

can be regarded as a switching class of a graph. We call
this the switching class of R.

Indeed, let r = (1,1,0""%) € R(Dy,). Then

N = {(1,0, ()" 0" NI u{(0, 1, [(=1), 0" 7))}
represents the switching class of L(K9,_9).

o Eg: L(K5)

o Ev: L(Kg) UK
o Eg L(Kg)



Maximality of Seidel matrices

12

Recall that a Seidel matrix is a symmetric matrix with
zero diagonal, & in off-diagonal entries.

If S is a principal submatrix of a Seidel matrix S’, then

Amax(S) < Amax(5"),
rank(S) < rank(S").

We say that S is maximal if there is no larger Seidel
matrix S’ satisfying

Amax(S) = Amax(5”)
rank(S) = rank(9’).

Lin—Yu (2020) call equiangular lines obtained from
maximal Seidel matrices saturated.

We say that S is strongly maximal if there is no larger
Seidel matrix S’ satisfying

)\max(s> — )\maX(S,)
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DyCDsC---,

Eg C E7 C Eg,

D¢ Z Eg,

D7  Eg,

Ds C Eg,

E, Z D, for n and n .

Eg: L(K5)
K@) U Ky

(
(K3)

m rm
o 1
|bb

T heorem
Let S = S(I'), Amax(S) = 3, rank(3I — §) = d. Suppose
S is maximal.

Q@ Ifd=>5, then I = L(K5> (KQ 4)

Q@ Ifd=6,then ' = L(Kg) U K1, <K275),

©Q Ifd=7, then I' = L(Ky),

Q@ Ifd=3,40rr >38, then ' = L(Ky,_1),

up to switching.

If S'is strongly maximal, then I' = L(K3g) up to switching.
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Results and conjectures

A Seidel matrix .S of order n achieving the absolute bound
d(d+1)
5
where d = rank(Apax(S)I — .9), is strongly maximal.

Examples: d = 2, 3,7, 23.
d = 2, A = 2: Unique set of 3 lines with angle /3.

NN =

0 1 —1]
S=110 1
—11 0

d=3 \=+5: Unique set of 6 lines (the diagonals of
the icosahedron). These are the unique strongly maximal
Seidel matrices (up to switching) of largest eigenvalue 2

and /5.

Classification of root systems is essential in proving the
uniqueness of strongly maximal Seidel matrix with

Amax = 3, but no similar tools are available for Ajjax = 5
(McL).

For n odd, K, is strongly maximal, with Apax =n — 1.



TFAE:

Q@ By(l') =0
Q@ MuaS(D) < 20— 1.

If Anax(S(I')) = 5, for example, I' = McL U K7, then

[A(Fl) T+ 31 :;]

[ has a representation of norm 3 in R?* contained in an
affine hyperplane

H={zeR™: (rz)=1},

where (r, 1) = 2.
The lattice generated by the image of I' admits C'o.3 as
automorphism group.

As an analogue to the case A\ ax(S) = 3, we ask:

Problem
Is McL U K7 the only strongly maximal Seidel matrix

with largest eigenvalue 5, up to switching?
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