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Venkov’s Theorem (1984)

Let A C R?!" be anextremal even unimodular lattice
X={rxelA|(z,z)=2n+2}.
ThenX is asphericall 1-design(after rescaling).

Example in R**, theLeech latticenas 196,560 shortest vectors,
which form atight 11-design after scaling.

Theorem 1 Bannai—Sloane, 1981)Every tight spherical
11-design in R?* is equivalent to the example above.
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Definition of a Spherical Design

A spherical -designX is a finite subset of the unit sphere
St Cc R” s.t.

holds for any polynomiaf(x) of degree
If X is a spherical -design INR™ with X = — X, then

X Is said to bdight if equality holds.
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Strategy

X tight sphericall1-design in the unit sphere R?!

—
24 — 1+ 5
\X]zQ( 5+ >:196,560.

— (x,y) € .
How can one use the fact thatis a spherical design?

% Zf(x) B f523 fdu

reX - f523 1d,LL

holds for any polynomiaf (x) of degree at most 11.
Take f(z) = (a, z)?, with o € R*, o # 0.

1 >, (o, )
WZ(a,x) ==
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Lattice

* A latticeis aZ-submodule ofR™ of rankn containing a

basis ofR"™.

A lattice A is calledintegralif Vz,y € A, (z,y) € Z.
Thedual latticeA* of an integral lattice\ Is

A*

and|A* : A
An integra
An integra

={z e R" | (z,y) € ZVy € A}
< 0.
latticeA is calledevenif (x,x) € 2Z Vx € A.

latticeA Is calledunimodulanf A = A*.
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Strategy

X: sphericall1-design, X = — X,

(z,y) € {£1,£5,+3,0}.

The latticeA = 2Z.X is even since it is integral and is generated
by vectors ofevennorm.

Theorem 2 (Conway). The Leech lattice Is the unigue even
|attice of dimension 24

min A = min{(z,z) | 0 # x € A}.

We wish to prove\ = 2Z.X Is andA has
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Strategy

X: sphericall1-design, X = — X,
2X > Vx,y, (x,x) =4, (x,y) € Z.

% Zf(x) B f523 fdu

reX - f523 1d,LL

holds for any polynomiaf (x) of degree at most .
Takef(z) = (o, 2)¥, with a € R*, j =

(27 — D!, )

2j: X
;(O"x) X a6 2av2 =)

holds forj =
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Strategy

Z 2 _ | X| 425 — DM, a)?

Z 24-26--- (244 25 — 2)

holds for; = 1,2, 3,4, 5.
Takea € A* = (2ZX)*. Then c Zforall z € 2X,

ink 27 _ ’X‘ (2] I 1)!!4j(&7@)j
— 24 -26--- (24 + 25 — 2)

holds for; = 1,2, 3,4, 5, where

ng={re2X | (a,x)=x/} (1 =1,2,...).
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System of Linear Equations

X: sphericall1-design, X = — X,
2X > Vx,y, (x,x) =4, (x,y) € Z.

where

(1 22 32 ...\

\
Q)
[EREY

3

(m)

1 2+ 3 ... / \ co(m)
1 26 3% ... = | c3(m)
1 28 33 ... ca(m)
\ ) \ (m)

\1 910 310 )

(25 — 1)!14dmm
. _|X
) =X e it 2 —2)
m = (a, a),

ny = |H{x € 2X | (a,x) = £k}
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Trick

X: sphericall1-design X = — X,
2X o Vr,y, (v,z) =4, (x,y) € Z. A =27.X.
Takea € A* In such a way that

m = (a,«) =min{(53,05) | 0 # 5 € a+ A}.

Then|(a,z)| <2 Vo € 2X,unlessy € 2X.
Indeed, sincéx, x) = 4,
(Jr€e2X CA) = a—z€a+ Aand

(a—z,aa—1x) = (a,a) = 2(a,z) + (z, )
< (a,a) —2-3+4
<

(@, @).
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Trick

X: sphericall1-design X = — X,
2X o Vr,y, (v,z) =4, (x,y) € Z. A =27.X.
Takea € A* In such a way that

m = (a,«) =min{(53,05) | 0 # 5 € a+ A}.

Then|(a,z)| <2 Vo € 2X,unlessy € 2X.

(1 22 \ (cl(m)\
1 2 co(m)
1 2° <n1> = | c3(m)
198 |\ ca(m)

\1 2% \05(771)/
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Conclusion

1 22 .
! 1 _ m
T2 5m>
1 26 o
m? —Tm+ 2 =0 = .
Butm = (o, a),a € A*, k= |A*: A| < ¢

— ka e N = (ka,ka) €2 = 111 = (a,a)
Conclusion

a € A" :minimal ina + A,a ¢ 2X = contradiction

This impliesA* = A
X = shortest vectors of

— A = Leech lattice.
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Observation

1 2°
o (”1> — | X|m
1 26 ", 5

* | X is not important.

3 53 o

O
—_

* Suffices to assum& Is a sphericab-design (equivalently,
7-design, sinceX = —X).

Theorem 3. Let X be a spherical 7-design in R?* with

X =-X,4(x,y) € ZVz,y € X. Then 2.X coincideswith the
196, 560 shortest vectors of the Leech lattice.

Corollary 1 (Bannai—Sloane, 1981)A tight spherical
11-design in R?* is unique.
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Extremal Lattices

An even unimodular latticA c R?*" is calledextremalif
min A = 2n + 2.
Examples:

°* 24n = 24, min A = 4 : the Leech lattice.

e 24n = 48, min A = 6 : three lattices known.

* 24n =72, min A = &8 : no lattices known.

°* 24n > 96, min A = 2n + 2 : no lattices known.

Venkov’s theorem implies that we always have a spherical
11-design.
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Dimension 48

Theorem 4. R*® > X: spherical 9-design, X > Vz, v,

6(x,y) € Z, = A = V/6ZX = anextremal lattice, vV6X =
the set of shortest vectors of A.

Proof. a € A*: minimalina + A, m = (o, a).

(1 22 3%\ N ( c1 o\

1 2¢ 34 Co(m

1 26 36 N9 :’X‘m 2( )
" c3(m)

\1 28 3) \' \ci(m)/

— an irreducible cubic equation in. []

Remark 1. Such a design is necessarily a spheridatiesign by
Venkov’s theorem. There are three extremal lattices of dsrom
48 known.
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Dimension 72

Theorem 5. R™ D X: spherical 11-design, X > Vz, v,

8(x,y) € Z, = A = V/8ZX = an extremal lattice, /8X =
the set of shortest vectors of A.

Proof. a € A*: minimalina + A, m = (o, a).

[ e )
Lot g | (™) ca(m)
] 26 36 48 Z2 = | X|m | cs(m)
1 285 3% 48 \3) cy(m)
\1 910 310 410) T4 \05(m))

— an irreducible quartic equation tn. ]

Problem 1. Doesthere exist an extremal even unimodular lattice
of dimension 727
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Binary Code Analogues

spherical(2/ + 1)-design -design
Integral lattice binary self-orthogonal code
unimodular lattice binary self-dual code
Venkov's theorem Assmus—Mattson theorem
Leech lattice extended binary Golay code
tight 11-design inR** S(5,8,24)
extremal lattice ifR*® extended binary quadratic residue

code of lengtht&
sphericall1-design inR*®  self-orthogonab-(48, 12, 8) design
sphericall1-design inR™  self-orthogonab-(72, 16, 78) design
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Binary Code Analogues

Let X be (the set of blocks of) &design which isikely to be
derived from a putative extremal doubly even self-dual
72,36, 16] code.

* Vx e X, wt(x) = 16.
* Vx,y € X, (z,y) = 0 (self-orthogonal).
° | X| = 249849.

Theorem 6 (Harada—Kitazume—Munemasa, 2004)The set X
coincides with the set of vectors of weight 16 in an extremal
doubly even self-dual |72, 36, 16] code.

An analogous result for lengd8 was obtained by
Harada—Munemasa—Tonchev (preprint, 2004).
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