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1 Spherical Designs

A spherical t -design X is a finite subset of the unit sphere Sn−1 ⊂ Rn such
that ∫

Sn−1 fdµ∫
Sn−1 1dµ

=
1

|X|
∑
x∈X

f(x)

holds for any polynomial f(x) of degree ≤ t.

This definition is useful if one wants to investigate properties of a spherical
design, but not convenient if one wants to prove something is a spherical
design. An equivalent condition is:∑

x,y∈X

Qj(〈x, y〉) = 0 (j = 1, 2, . . . , t), (1)

where {Qj}∞j=0 are suitably normalized Gegenbauer polynomials, defined by
Q0(x) = 1, Q1(x) = nx,

j + 1

n + 2j
Qj+1(x) = xQj(x)− n + j − 3

n + 2j − 4
Qj−1(x) (j = 1, 2, 3, . . .).

∗talk given on July 24, 2004, at Pusan National University; revised March 16, 2008
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2 Association Schemes

A (symmetric) association scheme is a pair (X, {Ri}d
i=0), where X is a finite

set, Ri is a (symmetric) relation on X ×X such that

(i) R0 is the diagonal relation.

(ii) {Ri}0≤i≤d is a partition of X ×X.

(iii) For any i, j, k ∈ {0, 1, . . . , d}, the number

pk
ij = |{γ ∈ X | (α, γ) ∈ Ri, (γ, β) ∈ Rj}|

is independent of the choice of (α, β) in Rk, and pk
ij = pk

ji.

For i ∈ {0, . . . , d}, let Ai be the adjacency matrix of the relation Ri:

(Ai)α,β :=

{
1 if (α, β) ∈ Ri,

0 otherwise.

The linear combinations of the adjacency matrices of a symmetric associ-
ation scheme form a commutative algebra A over R called the Bose–Mesner
algebra.

Let E be a primitive idempotent of A and E 6= 1
|X|J . Then E is a real

symmetric positive-semidefinite matrix of rank n = tr E. The matrix |X|
n

E
has all the diagonal entries 1, and we may write it as

|X|
n

E = tFF

where F is a n× |X| matrix (x-th column=x), and

{column vectors of F} = {x | x ∈ X} ⊂ Sn−1 ⊂ Rn.

If |X|E =
∑d

i=0 θ∗i Ai, then

〈x, y〉 =
θ∗i
n

if (x, y) ∈ Ri (cosines of the vectors).

A spherical representation of a symmetric association scheme forms a
spherical t-design iff∑

x,y∈X

Qj(〈x, y〉) = 0 (j = 1, 2, . . . , t).
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Equivalently,
d∑

i=0

kiQj(
θ∗i
n

) = 0 (j = 1, 2, . . . , t).

where ki is the valency of the relation Ri, i.e.,

ki =
|Ri|
|X|

.

Note that ∑
x,y∈X

kiQj(
θ∗i
n

) = 0 (j = 1, 2)

always hold, so a spherical representation X of a symmetric association
scheme X always give a spherical 2-design.

Moreover, X is a 3-design iff (E ◦ E)E = 0.
We formulate conditions in terms of parameters for a spherical repre-

sentation to become a spherical t-design for t ≥ 4, only for Q-polynomial
association schemes. Suppose X is Q-polynomial, i.e., if ∃v∗i (x): polynomial
of degree i, such that

Ei =
1

|X|
v∗i (|X|E) (i = 0, 1, . . . , d)

are all the primitive idempotents of A.
Then

xv∗i (x) = c∗i+1v
∗
i+1(x) + a∗i v

∗
i (x) + b∗i−1v

∗
i−1(x).

Lemma 1. Let X denote the embedding of a Q-polynomial association
scheme X into the unit sphere via the primitive idempotent E = E1.

(i) X is a 3-design if and only if a∗1 = 0.

(ii) X is a 4-design if and only if a∗1 = 0 and

b∗0b
∗
1c
∗
2 + 2(b∗1c

∗
2 − b∗0

2 + b∗0) = 0.

(iii) X is a 5-design if and only if X is a 4-design and a∗2 = 0.
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Among the known infinite families of P- and Q-polynomial association
schemes, only the following family produces spherical 4-designs, when em-
bedded into the unit sphere via the primitive idempotent E = E1.

The dual polar graph associated with the unitary group U2d(2) is defined
by:

vertices: maximal totally isotropic subspaces
adjacency: intersect at dimension d− 1

Then

n = rank E1 =
22d + 2

3
,

θ∗j
n

= (−1

2
)j.

In fact, this gives a spherical 5-design if d ≥ 3 ([3]).

3 Martinet’s Lattices

A lattice whose shortest vectors form a spherical 5-design is called strongly
perfect.

Up to dimension≤ 9, only certain root lattices and their duals are stronlgy
perfect.

Theorem 1 (Nebe–Venkov [4]). There are exactly two strongly perfect lat-
tices in dimension 10: Martinet’s lattice K ′

10 and its dual (K ′
10)

∗.

The lattice K ′
10 has 270 shortest vectors of norm 4, while the lattice (K ′

10)
∗

has 240 shortest vectors of norm 6.
Since these lattices look very special, it must be very nice. Do the set of

shortest vectors form association schemes?
There is a sufficient condition for a spherical t-design to carry a structure

of an association scheme. We need a definition to state the condition.
The degree of a finite subset Ω ⊂ Sn−1 is

|{(x, y) | x, y ∈ Ω, x 6= y}|.

Theorem 2 (Delsarte–Goethals–Seidel [1]). If Ω is a spherical t-design of
degree s and 2s− 2 ≤ t, then Ω carry a structure of an association scheme.
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The shortest vectors of K ′
10 have norm 4, with degree

s = |{2, 1, 0,−1,−2,−4}| = 6,

while t = 5. The shortest vectors of (K ′
10)

∗ have norm 6, with degree

s = |{3, 2, 1, 0,−1,−2,−3,−6}| = 8,

while t = 5. Thus, we can apply Theorem 2 in neither case.
In our case, however, there is an easy way to prove a stronger result if we

use a computer a little.
Let G be a finite irreducible subgroup of the real orthogonal group O(n, R).

The Molien series of G is

ΦG(q) =
1

|G|
∑
g∈G

1

det(I − q · g)
.

Theorem 3 (Goethals–Seidel [2]). Every G-orbit on the sphere is a spherical
t-design iff

(1− q2)ΦG(q) = 1 + 0 · q + · · ·+ 0 · qt︸ ︷︷ ︸ +at+1q
t+1 + · · ·

The following MAGMA session constructs the Martinet’s lattice, com-
putes the automorphism group and computes the Molien series.

Magma V2.11-1 Sat Jul 24 2004 14:19:43 [Seed = 1713821203]

Type ? for help. Type <Ctrl>-D to quit.

> ld:=LatticeDatabase();

> K12:=Lattice(ld,12,27); // Coxeter-Todd lattice

> sv:=ShortestVectors(K12);

> v1:=Random(sv);

> v2s:={ x : x in sv | (v1,x)^2 eq 4 };

> v2:=Random({ v : v in v2s |

> #{ x : x in sv | (v1,x) eq 0 and (v,x) eq 0 } eq 135 });

> v1v2p:={ x : x in sv | (v1,x) eq 0 and (v2,x) eq 0 };

> K:=LatticeWithGram(GramMatrix(Dual(sub< K12 | v1v2p >)));

> G:=AutomorphismGroup(K);

> AutL:=sub< GL(10,Rationals()) | Generators(G) >;

> Pt<q>:=PowerSeriesRing(Rationals(),10);

> (1-q^2)*(Pt!MolienSeries(AutL));

1 + 2*q^6 + 3*q^8 + O(q^10)
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We obtain
ΦAut(K′

10)(q) = 1 + 2q6 + 3q8 + · · ·

This means that every orbit of the automorphism group of Martinet’s lattice
K ′

10 is a spherical 5-design. In particular, the set of shortest vectors of the
lattice (K ′

10)
∗ is a spherical 5-design.

We now give an interpretation of the set of shortest vectors of the lattice
(K ′

10)
∗ in terms of an association scheme. There is a subgroup of index 80 in

the projective symplectic group PSp(4, 3):

PSp(4, 3)
40
⊃ line stabilizer

2
⊃ H

↓ ↓
S4 ⊃ A4

This gives a permutation representation of degree 80 of PSp(4, 3). Then
one obtains a commutative (but not symmetric) association scheme X =
PSp(4, 3)/H on 80 points with 2nd eigenmatrix

Q =


1 30 24 15 5 5
1 −30 24 15 −5 −5
1 0 4 −5 5/

√
−3 −5/

√
−3

1 0 4 −5 −5/
√
−3 5/

√
−3

1 10/3 −8/3 5/3 −5/3 −5/3
1 −10/3 −8/3 5/3 5/3 5/3


The direct product of two association schemes X and Z3 has its 2nd

eigenmatrix the tensor product:

Q =


1 30 24 15 5 5
1 −30 24 15 −5 −5
1 0 4 −5 5/

√
−3 −5/

√
−3

1 0 4 −5 −5/
√
−3 5/

√
−3

1 10/3 −8/3 5/3 −5/3 −5/3
1 −10/3 −8/3 5/3 5/3 5/3

⊗

1 1 1
1 ω ω2

1 ω2 ω



Fusing complex conjugates, we obtain
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Q =

valency

1 10 48 30 10 10 · · ·
1 5 −24 −15 −10 5 · · ·
1 5 −4 5 0 −5 · · ·
1 10/3 −16/3 10/3 10/3 10/3 · · ·
1 5/3 8/3 −5/3 −10/3 5/3 · · ·
1 0 8 −10 0 0 · · ·
1 −5/3 8/3 −5/3 10/3 −5/3 · · ·
1 −10/3 −16/3 10/3 −10/3 −10/3 · · ·
1 −5 −4 5 0 5 · · ·
1 −5 −24 −15 10 −5 · · ·
1 −10 48 30 −10 −10



1
2
24
27
54
24
54
27
24
2
1

This gives rise to a spherical representation:

valency

1 10 · · ·
1 5 · · ·
1 5 · · ·
1 10/3 · · ·
1 5/3 · · ·
1 0 · · ·
1 −5/3 · · ·
1 −10/3 · · ·
1 −5 · · ·
1 −5 · · ·
1 −10 · · ·



1
2
24

}
27
54
24
54
27
24
2

}
1

gives the
cosine sequence



1
1/2
1/3
1/6
0

−1/6
−1/3
−1/2
−1



1
26
27
54
24
54
27
26
1

This spherical representation realizes the set of 240 shortest vectors of the
lattice (K ′

10)
∗. One can check that this set forms a spherical 5-design using

the definition of the spherical design in terms of the Gegenbauer polynomials
(1).
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4 Conclusion

• The set of 240 shortest vectors of Martinet’s lattice (K ′
10)

∗ can be re-
constructed from(

permutation representation
of degree 80 of PSp(4, 3)

) ⊗
Z3.

Can we generalize this construction to obtain more spherical 5-designs?
It seems important to notice the following aspect of this construction:

nonsymmetric ⊗ nonsymmetric
fusion
=⇒ symmetric

If one were to fuse pairs of nonsymmetric relations before taking the
direct product, one only finds a spherical representation of dimension
20, not 10.

• A more straightforward construction is as follows. Let F be the matrix
tFF = |X|

n
E, where E is the primitive idempotent. The Gram matrix

of the set X ∪ ωX ∪ ω2X ⊂ C5 regarded as vectors of R10 is

Re

 tF
ωtF
ω2tF

 (
F ωF ω2F

)
= Re tFF ⊗W

= E ⊗W + E ⊗W,

where

W =

 1 ω2 ω
ω 1 ω2

ω2 ω 1

 .

Note that the matrix E above gives an embedding of X into a lattice
of rank 5 over Z[ω].

• Can the set of 270 shortest vectors of K ′
10 be constructed in a similar

manner as above?
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