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The Terwilliger algebra of an association scheme was introduced by Paul
Terwilliger [7] in order to study P-and Q-polynomial association schemes.
The purpose of this paper is to discuss in detail properties of the Terwilliger
algebra of the group association scheme of a finite group. We shall give
bounds on the dimension of the Terwilliger algebra, and define triple regu-
larity.

Let G be a finite group, Cy = {e}, C1, ..., Cy the conjugacy classes of G.
For i =0,1,...,d, define

Ry = {(x,y)lyz" € C;}.

Then X(G) = (G,{R;}o<i<a) becomes a commutative association scheme,
and it is called the group association scheme of the finite group G. Define
the adjacency matrix A; of the relation R;:

(Az‘)ac,y = { 1 (:E,y) € R;

0 otherwise

Then there exist nonnegative integers p¥, such that 4;4; = >>f_o p¥ Ax. This
is equivalent to the relation C,C; = Zg:o pf’ij where C; = > cc. v € CG
and the multiplication is performed as elements of the group algebra CG. If
we put A = (Ao, ..., As)c, then A becomes a (d+ 1)-dimensional subalgebra
of the matrix algebra M (C), and is called the Bose-Mesner algebra. It is
isomorphic to the center of the group algebra. Let Ej, ..., E; be the primitive
idempotents of A. Since A is closed under the Hadamard multiplication, we
have E; o E/; € A, so that there exist complex numbers qu such that

d
> i B

k=0

1
EioB = —
TGl
(it is known that ¢}; are indeed real and nonnegative, see [2]).
We define the diagonal matrices E}, A by

(E)se = {

1 ze(;
0 otherwise



(A:)m = ’G|(Ei)e,w
Then we have .
ATAT =D gl A;
k=0
and the algebra
A = (A},...,A)ec =(ES, ..., El)c

is called the dual Bose-Mesner algebra.

Now the Terwilliger algebra 7" is the subalgebra of M|¢|(C) generated by
A and A*. Since T is closed under the conjugate-transpose, T is semisimple,
and one can easily see that 7" is non-commutative if G' # 1.

1 Bounds on dim7T’

In this section we give upper and lower bounds on the dimension of the
Terwilliger algebra of a group association scheme. The following identities
will be used in the proof of the next lemma. See [2] for a proof.

E,=E'=FE

; - for some 7 € {0,1,...,d},
rank E; = |G|(E;)e.,

qgkrank E; = qurank E.

Lemma 1 (i) tr(EA;E; (B AnE?) ) = Gubmmpt|Cil.
(i) tr(B A2 E(E AL E,) ) = 6ubimkmgtrank By

Proof. (i) This follows directly from the definition.
(ii) By the identities mentioned above,

w(EA B (BALE,) ) = tr(EEA EE,A:)
= 000l GI* Y (E)ay(E))ey(Br)yo(Em)ae

z,yeG
= (Sllékn‘G’Q(EJ(EZ (¢] Elz)Em)e,e
= 5il5kn5jm|G|QZ;;(Ej)e,e
= 5il5kn6jmqurank Ek

This completes the proof. O
Consider the subspaces Ty and T defined by

Ty = spanc{E;A;E 0 < 4,7,k < d},



Ty = spanc{ F;ALEL|0 <i,j,k < d}.
0 C J

By Lemma 1 we have
dim Ty = [{(i, 5, k)Ipf; # O},

dim Ty = [{(i, j, k)|qf; # 0}].

In other words, dim7j is the number of triples (¢, j, k) such that (C;C;) N
Cr # (). There is a one-to-one correspondence between the set of primitive
idempotents {E;}o<i<q and the set of complex irreducible characters of G,
say F; <> x;. As shown in [2], qu = %(Xﬁ(j»)@) holds. Thus, dim 7}
is the number of triples (4, j, k) such that (x;x;, xx) # 0.

Let T = Endg(CG) be the centralizer algebra of the permutation repre-
sentation of G acting on G itself by conjugation. The dimension of T is the
number of orbits of G acting on G x G by simultaneous conjugation. As is

well-known, this is equal to the average of fixed points, i.e.,

S
|Gl

s T 2 d |G|
dim7T = > |Cq(a)l :Z|C~|'
i=0 1~

aeG

Theorem 2 We have the following bounds on the dimension of the Ter-
williger algebra T'.

(i) [{(, 4, k)Ip; # 0} < dim T

(it) [{(4,4,k)lg; # 0} < dimT.

(iif) dim T < 27, [G|/|Cil.

Proof. These are direct consequences of 7o C 1", Ty C T and T' C T. O

If G is abelian, then Theorem 2 implies dim Ty = |G|?, i.e., T coincides
with the full matrix algebra Mg((C).

2 Triple regularity
If the finite group G acts transitively on the set
Sijk = {(g,h) € Cz X legh S Ck}

for any 4,5,k € {0,1,...,d} with S;;; # 0, we say that G is triply transitive.
Note that, since G x G = U, ;xSijr and dim Ty = [{(4, j, k)|Sijr # 0}], G is
triply transitive if and only if dim7y = dim T. Inthiscase Ty =T =T
holds. We call the finite group G triply regular if Ty = T', and dually triply
regular if 7y = 1. Since T or 1] generates T' as an algebra, G is triply
regular (resp. dually triply regular) precisely when the subspace Ty (resp.
T7) is a subalgebra.



A combinatorial meaning of the triple regularity is as follows. Given
1,7, k,l,m,n, the size of the set

{z € C,l(y,2) € R, (x,2) € Ry}

depends only on i, j, k, [, m,n, and is independent of the choice of (z,y) €
Sijk- This property, when reformulated for association schemes, plays a cen-
tral role in the theory of spin models (see [4], [5]).

If G is abelian, then dim Ty = |G|?, so that G is triply transitive.

Examples. (i) Let G = A4 be the alternating group on four letters. G is
triply regular but not triply transitive.
(ii) All finite groups of order 16 are triply transitive.

As for the dual triple regularity, we give a sufficient condition in terms of
character products.

Theorem 3 Let xo, ..., xq be the complex irreducible characters of the finite
group G. If x;x; s multiplicity-free for any t,j, then Tj = T holds, in
particular, G is dually triply reqular. Conversely, Ti = T implies that XiX;
18 multiplicity-free for any i, j.

Proof. Write x;x; = e, NZ@»X}C. Then we have

NG = X ()
- @Z(Zxxg)mg))(;xxg)xxg))

geG =0

1
yle]
i=0 |Oz|

Thus, if N5 € {0,1}, then

d
dmT = 3 |G|/|C)
=0
= >N
2,5,k
= {5, k)INE # 0}
= 1{(i.5.k)ld; # 0}
= dim7y

as desired. The converse can also be seen from the above equalities. O



Proposition 4 Let G and G5 be finite groups.
(i) If Gy and Gy are triply transitive, so is G X Gs.
(i) If G1 and Gy are triply regular, so is G X Gs.
(iii) If G and Go are dually triply reqular, so is G1 X Gj.

Proof. (i) This follows immediately from the definition.

(ii) If Gy and G are triply regular, then T5(G,) and To(G2) are subalge-
bras. Since Ty(G1 x Gg) = To(G1) @ To(Ga), it follows that Gy x G is triply
regular.

(iii) Similar as (ii). O

Theorem 5 Let Dy, = {o,7|c" =1, 72 = 1, 70T = 0 1) be the dihedral
group of order 2n. Then Do, is triply transitive and dually triply reqular.

Proof. First suppose that n is odd, say n = 2m + 1. Then the conjugacy
classes of Dy, are Cy = {e}, C; = {0,607} (1 <i < m) and C,,y1 = 7{(0).
Thus dim 7 = 2m? + 5m +4. In order to compute dim T, let us consider the
product C;C;. If 1 <4 < m, then

C, itj=0
CC. — CoU{o® o~} ifj=i
v {o", 077} U{o" 7,077} if1<j<mandj#i
Conir if j=m+ 1.

Also
Cm“CJ—{ CoU---UC, ifj=m+1.

We can easily see that the number of triples (4, j, k) with (C;C;) N Cy # 0 is
(m+2)+m@2m+2) + (2m+2) = 2m? + 5m + 4 = dim T, so that Do, is
triply transitive.

To show that Ds, is dually triply regular, it suffices to prove that x;x;
is multiplicity-free, where {xo,..., Xm+1} is the set of complex irreducible
characters of D,,. We may assume x;(1) = x;(1) = 2, otherwise one of x; or
X; has degree 1, so that x;x; is irreducible. But all irreducible characters of
degree 2 are obtained by inducing a linear character of the subgroup (o) to
D,,. It is now straightforward to check that x;x; is multiplicity-free. Hence
Dy, is dually triply regular by Theorem 3.

Next suppose that n is even, say n = 2m. Then the conjugacy classes
of Dy, are Cy = {e}, C; = {o',07'} (1 < i < m—1), C,, = {o™},
Crng1 = 7(02), and Cpio = 70(c?). Thus dim T = 2m? + 6m + 8. A tedious
calculation similar to the case n = 2m + 1 establishes dim 7 = dim 7] =
2m? + 6m + 8, hence Do, is triply transitive and dually triply regular. O

We have computed dim 7y, dim 7, and dim T for all nonabelian inde-
composable finite groups of order at most 100 using GAP [6]. The results



are tabulated in the Appendix. We have not found any group for which
dim Ty = dim 7' > dim T holds.

To conclude this section, we give a list of indecomposable finite groups
of order at most 24 which are not triply transitive. Balmaceda and Oura [1]
has determined the Terwilliger algebra for G = S5 and As.

dim 7y | dim 7§ | dimT' | dim T’

Ay 19 19 19 22
5.4 29 29 29 37
7.3 35 35 37 41
SL(2,3) 75 73 75 76
Sa 42 43 43 43

3 Relationship with the quantum double

Let A be the complex vector space with basis G x G x G, and define the
multiplication in A by

(flf, g, CL) (y7 h> b) - dr*lga,h(xy? g, CLb)

and extend it linearly to A. Then A becomes an associative algebra. The

subalgebra of A defined by
D= <(hvgvh)|gah € G)C C -’Zl

is known as the quantum double of the finite group G (precisely speaking,
the quantum double is defined for a Hopf algebra, and D is the quantum
double of the group Hopf algebra of G, see [3]). On the other hand, let

T ={(1,9,h)|g,h € G)c C A,

and denote by 7¢ the G-fixed subspace of 7. Then T¢ is isomorphic to
the centralizer algebra T defined in Section 2. Therefore, A is an algebra
containing both the quantum double D and the Terwilliger algebra T'.
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