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Preface

This lecture note is based on the lectures given at Kyushu University in 1994 and at
Ateneo de Manila University in 1995. In these lectures I presented the theory of quadratic
forms over finite fields. The emphasis is placed on geometric and combinatorial objects,
rather than the orthogonal group itself. Our goal is to introduce dual polar spaces as
distance-transitive graphs in a self contained way. Prerequisites are linear algebra, and
finite fields. In the later part of the lecture, familiarity with counting the number of
subspaces of a vector space over a finite field is helpful.

This lecture note is not intended as a full account of dual polar spaces. It merely
treats those of type Dn(q), Bn(q) and 2Dn(q). One can treat other types, namely, those
coming from symplectic groups and unitary groups, in a uniform manner, but I decided
to restrict our attention to the above three types in order to save time. Once the reader
finishes this note, he/she should be able to learn the other cases with ease.

A motivation of writing this note, as well as giving the lecture, is to make the reader
get acquainted with nontrivial examples of distance-transitive graphs. I consider Ham-
ming graphs and Johnson graphs trivial, as one can establish their distance-transitivity
without any special knowledge. The book by Brouwer–Cohen–Neumaier [2] seems too
advanced for the beginning students, while other books on the classical groups and their
geometries are oriented toward group theory. I hope this lecture note serves as a starting
point for the reader to further study of distance-transitive and distance-regular graphs.

The presentation of this lecture note is strictly toward an introduction of dual polar
spaces of type Dn(q), Bn(q) and 2Dn(q). I have tried to throw away whatever unnecessary,
to make it short. The Witt’s extension theorem is included in the appendix for the sake
of completeness. This fundamental theorem will not be used in the main text.

This lecture note was completed while the author was visiting Ateneo de Manila
University, under a grant from JSPS–DOST. I would like to thank these organizations for
their financial support. I would like to thank William Kantor for a helpful discussion on
Witt’s theorem. I also would like to thank faculty members of Mathematics Department
of Ateneo de Manila University for their hospitality.
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1 Symmetric bilinear forms and quadratic forms

All vector spaces are assumed to be finite dimensional.

Definition. A symmetric bilinear form on a vector space V over a field K is a mapping
B : V × V −→ K satisfying

B(u, v) = B(v, u),

B(u1 + u2, v) = B(u1, v) +B(u2, v),

B(αu, v) = αB(u, v)

for any u, u1, u2, v ∈ V and α ∈ K. Then clearly

B(u, v1 + v2) = B(u, v1) +B(u, v2),

B(u, αv) = αB(u, v)

hold for any u, v1, v2, v ∈ V and α ∈ K.

Definition. If U is a subset of a vector space V and B is a symmetric bilinear form on
V , then we define the orthogonal complement of U by

U⊥ = {v ∈ V |B(u, v) = 0 for any u ∈ U}.

The subspace V ⊥ is also denoted by RadB which is called the radical of the symmetric
bilinear form B. The symmetric bilinear form B is said to be non-degenerate if RadB =
0. If U is a subspace, then B|U : U × U −→ K is a symmetric bilinear form on U , so by
the definition Rad (B|U) = U ∩ U⊥. The subspace U is said to be non-degenerate if the
restriction of B to U is non-degenerate, that is, Rad (B|U) = 0. If U is a direct sum of
two subspaces U1, U2 and if B(u1, u2) = 0 for any u1 ∈ U1 and u2 ∈ U2, then we write
U = U1 ⊥ U2. In this case Rad (B|U) = Rad (B|U1) ⊥ Rad (B|U2) holds.

Proposition 1.1 Let B be a symmetric bilinear form on a vector space V , U a subspace
of V . Then we have the following.

(i) dimU + dimU⊥ = dimV + dimU ∩ RadB.

(ii) U⊥⊥ = U + RadB.

(iii) If U is non-degenerate, then V = U ⊥ U⊥.

Proof. (i) Suppose dimV = n and fix a basis {v1, . . . , vn} of V in such a way that
〈v1, v2, . . . , vk〉 ⊥ U ∩RadB = U holds. Then U⊥ is isomorphic to the space of solutions
of the system of linear equations

n∑
i=1

B(vi, vj)xi = 0 (j = 1, . . . , k).

Since 〈v1, v2, . . . , vk〉 ∩ RadB = 0, the n × k coefficient matrix (B(vi, vj)) of the above
equations has rank k. Thus dimU⊥ = n− k, proving (i).
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(ii) Clearly, U ⊥ RadB ⊂ U⊥⊥ holds. By (i) we have

dimU⊥⊥ = dimV − dimU⊥ + dimU⊥ ∩ RadB

= dimU − dimU ∩ RadB + dim RadB

= dim(U + RadB).

Therefore U⊥⊥ = U + RadB.
(iii) Since 0 = RadU = U ∩ U⊥ ⊃ U ∩ RadB, we have dimU + dimU⊥ = dimV by

(i) and hence V = U ⊥ U⊥.

Definition. A quadratic form f on a vector space V over a field K is a mapping f :
V × V −→ K satisfying

f(αv) = α2f(v),

f(u+ v) = f(u) + f(v) +Bf (u, v)

for any u, v ∈ V and α ∈ K, where Bf is a symmetric bilinear form.

Proposition 1.2 If V is a vector space of dimension n, then there is a one-to-one cor-
respondence between quadratic forms on V and homogeneous polynomials of degree 2 in
n variables.

Proof. Fix a basis v1, . . . , vn of V . If

p = p(x1, . . . , xn) =
∑
i≤j

αijxixj (1.1)

is a homogeneous polynomial of degree 2 in x1, . . . , xn, then define a mapping f by
f(v) = p(λ1, . . . , λn), where v =

∑n
i=1 λivi. Clearly

f(αv) = f(
n∑

i=1

αλivi) = p(αλ1, . . . , αλn) = α2p(λ1, . . . , λn).

If we define Bf by
Bf (u, v) =

∑
i≤j

αij(µiλj + µjλi)

where u =
∑n

i=1 µivi, v =
∑n

i=1 λivi, then Bf is a symmetric bilinear form on V and we
have

f(u+ v) =
∑
i≤j

αij(µi + λi)(µj + λj)

=
∑
i≤j

αijµiµj +
∑
i≤j

αijλiλj +
∑
i≤j

αij(µiλj + µjλi)

= f(u) + f(v) +Bf (u, v)

Thus f is a quadratic form. Notice that the coefficients of the polynomial p can be
recovered by the formula

αii = f(vi), (1.2)

αij = Bf (vi, vj) (i < j). (1.3)
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Conversely, given a quadratic form f , define a homogeneous polynomial p by (1.1), (1.2)
and (1.3). Then we have

f(v) = f(
n∑

i=1

λivi)

=
n∑

i=1

f(λivi) +
∑
i<j

Bf (λivi, λjvj)

=
n∑

i=1

λ2
i f(vi) +

∑
i<j

λiλjBf (vi, vj)

=
n∑

i=1

αiiλ
2
i +

∑
i<j

αijλiλj

=
∑
i≤j

αijλiλj

= p(λ1, . . . , λn).

This establishes a one-to-one correspondence.

Definition. If f is a quadratic form on a vector space V , a vector v ∈ V is called singular
if f(v) = 0. A subspace U of V is called singular if it consists of singular vectors.

Example. Let p = x1x2 + x3x4, and consider the corresponding quadratic form f deter-
mined by p with respect to the standard basis of

V = GF(2)4 = {(α1, α2, α3, α4)|αi = 0 or 1}.

Nonzero singular vectors are

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1)
(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1),

while singular 2-dimensional subspaces are

U1 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 0)},
U2 = {(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1)},
U3 = {(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 1, 1)},
U4 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1)},
U5 = {(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 1, 1, 0)},
U6 = {(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)}.

Let us construct a graph by taking vertices as singular 2-dimensional subspaces, joining
two vertices when they intersect nontrivially. The graph is isomorphic to the complete
bipartite graph K3,3 depicted below.
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Definition. The radical of a quadratic form f on a vector space V over a field K is defined
to be

Rad f = f−1(0) ∩ RadBf .

The quadratic form f is said to be non-degenerate if Rad f = 0. If U is a subspace
of V , then f |U : U −→ K is a quadratic form on U , so by the definition Rad (f |U) =
f−1(0) ∩ U ∩ U⊥. The subspace U is said to be non-degenerate if the restriction of f to
U is non-degenerate, that is, Rad (f |U) = 0.

We denote by chK the characteristic of a field K. The whole theory of quadratic
forms looks quite different if chK is 2, but we shall try to take as unified an approach as
possible. First notice that Rad f = RadBf if chK 6= 2. Indeed,

2f(v) = Bf (v, v) (1.4)

holds for any v ∈ V , thus if chK 6= 2, then f(v) = 0 for any v ∈ RadBf . Notice also
that Rad f is a subspace even if chK = 2.

Proposition 1.3 Let f be a non-degenerate quadratic form on a vector space V , U a
subspace of V . If Bf |U is non-degenerate, then we have V = U ⊥ U⊥ and U⊥ is non-
degenerate.

Proof. The first part follows from Proposition 1.1 (iii). Since

RadBf = Rad (Bf |U) ⊥ Rad (Bf |U⊥) = Rad (Bf |U⊥),

we have

Rad (f |U⊥) = f−1(0) ∩ Rad (Bf |U⊥) = f−1(0) ∩ RadBf = Rad f = 0.

Thus U⊥ is non-degenerate.

Lemma 1.4 Let f be a non-degenerate quadratic form on V . If U is a singular subspace
of V , then dimU⊥ = dimV − dimU and Rad (f |U⊥) = U .

Proof. Since f is non-degenerate, we have U ∩ RadB = 0, so that by Proposition 1.1,
dimU⊥ = dimV − dimU and U⊥⊥ = U ⊥ RadB hold. The latter equality implies
U⊥ ∩ U⊥⊥ = U ⊥ RadB, and hence Rad (f |U⊥) = f−1(0) ∩ (U ⊥ RadB) = U .

If chK = 2, then Bf (v, v) = 0, that is, the symmetric bilinear form Bf is also
alternating. Recall that a square matrix A = (aij) is alternating if aii = 0 and aij+aji = 0
for all i, j.

Proposition 1.5 If an alternating matrix is nonsingular, then its size must be even.

Proof. Let A be an alternating matrix of size n. This is trivial when chK 6= 2, as
|A| = |AT | = |−A| = (−1)n|A|. If chK = 2, then consider the definition of determinant.
If n is odd, there is no fixed-point-free permutation of order 2. Thus all terms are canceled
out in pairs, so that the determinant is zero. Suppose rankA = r. Let B be a nonsingular
matrix whose first n− r columns form the right null space of A. Then the matrix tBAB
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has rank r and contains a r× r alternating submatrix with all other part 0. By the first
part we see r is even.

From now on we assume that K is a finite field. If chK = 2, then the multiplicative
group K× is a cyclic group of odd order, and consequently a square root of an element
is uniquely determined. Moreover,

√
α+ β =

√
α+

√
β holds, as taking the square root

is the inverse of the Frobenius automorphism α 7→ α2. We need this fact to prove the
following proposition.

Proposition 1.6 If f is a non-degenerate quadratic form on a vector space V over K,
then either Bf is non-degenerate, or chK = 2, dimV is odd, and dim RadBf = 1.

Proof. As shown before, Rad f = RadBf if chK 6= 2. Thus, if RadBf 6= 0, then chK = 2.

Then the mapping from RadBf to K defined by v 7→
√
f(v) is an isomorphism of K-

vector spaces. It remains to show that n = dimV is odd. Fix a basis {v1, . . . , vn} of
V such that vn is a basis of RadBf . Then the matrix A = (Bf (vi, vj))1≤i,j≤n−1 is a
nonsingular alternating matrix of size n − 1. By Proposition 1.5 we conclude that n is
odd.

Definition. Let f be a quadratic form on a vector space V over K. A hyperbolic pair
is a pair of vectors {u, v} of V satisfying f(u) = 0, f(v) = 0 and Bf (u, v) = 1. Clearly,
a hyperbolic pair is a set of linearly independent vectors. The 2-dimensional subspace
〈u, v〉 spanned by the hyperbolic pair {u, v} is called a hyperbolic plane.

If {v1, v2} is a hyperbolic pair, then the quadratic form f |〈v1,v2〉 corresponds to the
monomial x1x2 in the sense of Proposition 1.2. Indeed, f(λ1v1 + λ2v2) = λ2

1f(v1) +
λ2

2f(v2)+λ1λ2Bf (v1, v2) = λ1λ2. A hyperbolic plane P is clearly non-degenerate. Indeed,
Bf |P is non-degenerate.

Proposition 1.7 If f is a quadratic form on a vector space V , u is a nonzero singular
vector, and Bf (u,w) 6= 0, then there exists a vector v ∈ 〈u,w〉 such that {u, v} is a
hyperbolic pair.

Proof. Let w1 = Bf (u,w)−1w. Then Bf (u,w1) = 1 and v = −f(w1)u + w1 has the
desired property.

Proposition 1.8 If f is a non-degenerate quadratic form on a vector space V and u is a
nonzero singular vector, then there exists a vector v such that {u, v} is a hyperbolic pair.

Proof. Since f(u) = 0, u 6∈ RadBf . Thus there exist a vector w such that Bf (u,w) 6= 0.
The result follows from Proposition 1.7.

Definition. Let f, f ′ be quadratic forms on vector spaces V, V ′ over K, respectively. An
isometry σ : (V, f) −→ (V ′, f ′) is an injective linear mapping from V to V ′ satisfying
f(v) = f ′(σ(v)) for all v ∈ V . The two quadratic forms f, f ′ are called equivalent if there
exists an isometry from V onto V ′.

We shall use the following lemma to check a given linear mapping is an isometry.
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Lemma 1.9 Let f, f ′ be quadratic forms on vector spaces V, V ′ over K, respectively, and
let {v1, . . . , vn} be a basis of V . An injective linear mapping σ : V −→ V ′ is an isometry
if and only if

f(vi) = f ′(σ(vi)) for all i = 1, . . . , n,

Bf (vi, vj) = Bf ′(σ(vi), σ(vj)) for all i, j = 1, . . . , n.

Proof. Under the stated conditions, we have

f(
n∑

i=1

λivi) =
n∑

i=1

λ2
i f(vi) +

∑
i<j

λiλjBf (vi, vj)

=
n∑

i=1

λ2
i f

′(σ(vi)) +
∑
i<j

λiλjBf ′(σ(vi), σ(vj))

= f ′(
n∑

i=1

λiσ(vi))

= f ′(σ(
n∑

i=1

λivi)),

so that σ is an isometry. The converse is obvious.
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2 Classification of quadratic forms

In this section we classify non-degenerate quadratic forms. As before, we let V be a
finite-dimensional vector space over a finite field K.

Definition. Let f be a quadratic form on V . The Witt index of f is defined to be the
maximum of the dimensions of singular subspaces of V .

Proposition 2.1 Let f be a quadratic form of Witt index d on V . Then any maximal
singular subspace of V has dimension d.

Proof. Let U be a singular subspace of dimension d. We want to show that any singular
subspace W of dimension less than d cannot be maximal. Since W⊥ + U ⊂ (W ∩ U)⊥,
we have, by Proposition 1.1 (i)

dimW⊥ ∩ U = dimW⊥ + dimU − dim(W⊥ + U)

≥ dimV + dimW ∩ RadBf − dimW

+ dimU − dim(W ∩ U)⊥

≥ dimV + dimW ∩ U ∩ RadBf − dim(W ∩ U)⊥

+ dimU − dimW

= dimW ∩ U + dimU − dimW

> dimW ∩ U.

This implies that there exists a nonzero vector u ∈ W⊥ ∩ U with u 6∈ W . The subspace
W ⊥ 〈u〉 is a singular subspace containing W , so that W is not maximal.

The assertion of Proposition 2.1 is also a consequence of the Witt’s extension theorem
(see Theorem A.6). Indeed, the Witt’s extension theorem implies that the group of
isometries acts transitively on the set of maximal singular subspaces. Yet another proof
of this fact will be given in Appendix B.

Lemma 2.2 Let K be a finite field of odd characteristic. Then for any α ∈ K there
exist elements λ, µ ∈ K such that α = λ2 + µ2 holds.

Proof. If α is a square, then we may take µ = 0, so let us assume that α is a non-square.
Thus it suffices to show that every non-square can be expressed as the sum of two squares.
To show this, it is then suffices to prove that some non-square can be expressed as the
sum of two squares. Suppose contrary. Then the sum of two squares is always a square,
so that the set of all squares becomes an additive subgroup of K of order (|K| + 1)/2,
which is not a divisor of |K|, contradiction.

Lemma 2.3 Let f be a non-degenerate quadratic form on V . If dimV ≥ 3, then the
Witt index of f is greater than 0.

Proof. Case 1. chK 6= 2. Let v1 ∈ V be a nonzero vector. We may assume f(v1) 6= 0.
Then Bf |〈v1〉 is non-degenerate, so that by Proposition 1.1 (iii), we have V = 〈v1〉 ⊥ 〈v1〉⊥.
Let v2 ∈ 〈v1〉⊥ be a nonzero vector. Again we may assume f(v2) 6= 0. If we put P =
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〈v1, v2〉, then we can see easily that Bf |P is non-degenerate. Again by Proposition 1.1 (iii),
we have V = P ⊥ P⊥ = 〈v1〉 ⊥ 〈v2〉 ⊥ P⊥. Let v3 ∈ P⊥ be a nonzero vector. We may
assume f(v3) 6= 0. Then

{f(v1), f(v2), f(v3)} ⊂ K× = (K×)2 ∪ ε(K×)2,

where ε is a non-square, hence two of the three elements belong to the same part. Without
loss of generality we may assume f(v1) and f(v2) belong to the same part, that is,
f(v1)f(v2)

−1 = α2 ∈ (K×)2. Replacing v2 by αv2, we may assume f(v1) = f(v2). By
Lemma 2.2, there exist elements α, β ∈ K such that −f(v3)f(v1)

−1 = α2 + β2. Now the
vector v = αv1 + βv2 + v3 has the desired property f(v) = 0.

Case 2. chK = 2. LetW be a subspace of V of dimension 3. If f |W is degenerate, then
f−1(0) 6= 0, so the assertion holds. If f |W is non-degenerate, then let 〈v〉 = RadBf |W .

Pick an element u ∈ W , u 6∈ RadBf |W . Then f(
√
f(v)u+

√
f(u)v) = 0 as desired.

Proposition 2.4 Let f be a non-degenerate quadratic form on V . If U is a maximal
singular subspace of V and dimU = d, then there exist hyperbolic pairs {v2i−1, v2i} (i =
1, . . . , d) such that U = 〈v1, v3, . . . , v2d−1〉 and

V = 〈v1, v2〉 ⊥ · · · ⊥ 〈v2d−1, v2d〉 ⊥ W,

where W is a subspace containing no nonzero singular vectors. In particular, dimV =
2d+ e, e = 0, 1 or 2.

Proof. We prove by induction on d. The case d = 0 is trivial except the assertion
on dimW , which follows from Lemma 2.3. Suppose d ≥ 1. Pick a nonzero vector
v1 ∈ U and take a complementary subspace U ′ in U : U = 〈v1〉 ⊥ U ′. The subspace
U ′ is singular, so by Lemma 1.4, we have Rad (f |U ′⊥) = U ′. Since f(v1) = 0 and
v1 6∈ U ′, we see v1 6∈ Rad (Bf |U ′⊥). This implies that there exists a vector v ∈ U ′⊥ such

that Bf (v1, v) 6= 0. By Proposition 1.7 there exists a vector v2 ∈ 〈v1, v〉 ⊂ U ′⊥ such
that {v1, v2} is a hyperbolic pair. By Proposition 1.3, we have V = P ⊥ P⊥, where
P = 〈v1, v2〉, and P⊥ is non-degenerate. Since v1, v2 ∈ U ′⊥, we see U ′ ⊂ P⊥. Also, U ′ is
a maximal singular subspace of P⊥, since otherwise U would not be a maximal singular
subspace of V . By induction we find hyperbolic pairs {v2i−1, v2i} (i = 2, . . . , d) such that

P⊥ = 〈v3, v4〉 ⊥ · · · ⊥ 〈v2d−1, v2d〉 ⊥ W,

where W is a subspace of dimension 0, 1 or 2, containing no nonzero singular vectors.
This gives the desired orthogonal decomposition of V .

Theorem 2.5 Let f be a non-degenerate quadratic form on V with dimV = 2m + 1.
Then f has Witt index m and there exists a basis {v1, . . . , v2m+1} of V such that

f(
2m+1∑
i=1

ξivi) =
m∑

i=1

ξ2i−1ξ2i + ξ2
2m+1 (2.1)

or ε is a non-square in K with chK 6= 2 and

f(
2m+1∑
i=1

ξivi) =
m∑

i=1

ξ2i−1ξ2i + εξ2
2m+1 (2.2)
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Proof. Clearly f has Witt index m by the second part of Proposition 2.4. Also by
Proposition 2.4, there exists a basis {v1, . . . , v2m, w} such that

V = 〈v1, v2〉 ⊥ · · · ⊥ 〈v2m−1, v2m〉 ⊥ 〈w〉,

where {v2i−1, v2i} (i = 1, . . . ,m) are hyperbolic pairs, f(w) 6= 0. If f(w) is a square in K,
say f(w) = α2 for some α ∈ K, then defining v2m+1 = α−1w, we obtain the desired form
of f . If f(w) is a non-square in K (this occurs only when chK 6= 2), then f(w) = εα2

for some α ∈ K. Again defining v2m+1 = α−1w, we obtain the desired form of f .

Corollary 2.6 Let f, f ′ be non-degenerate quadratic forms on vector spaces V, V ′, re-
spectively, over K with dimV = dimV ′ = 2m+ 1.

(i) If chK = 2, then f is equivalent to f ′.

(ii) If chK is odd, let ε be a non-square. Then f is equivalent to either f ′ or εf ′.

Proof. (i) This follows immediately from Theorem 2.5.
(ii) Let

f(
2m+1∑
i=1

ξivi) =
m∑

i=1

ξ2i−1ξ2i + ξ2
2m+1,

f ′(
2m+1∑
i=1

ξiv
′
i) =

m∑
i=1

ξ2i−1ξ2i + εξ2
2m+1,

for some bases {v1, . . . , v2m+1}, {v′1, . . . , v′2m+1} of V, V ′, respectively. We want to con-
struct an isometry from (V, f) to (V ′, εf ′). Define a new basis {v′′1 , . . . , v′′2m+1} of V ′

by
v′′2i−1 = ε−1v′2i−1 i = 1, . . . ,m+ 1,
v′′2i = v′2i i = 1, . . . ,m.

Then we have

εf ′(
2m+1∑
i=1

ξiv
′′
i ) = εf ′(

m+1∑
i=1

ε−1ξ2i−1v
′
2i−1 +

m∑
i=1

ξ2iv
′
2i)

= ε(
m∑

i=1

ε−1ξ2i−1ξ2i + ε(ε−1ξ2m+1)
2)

=
m∑

i=1

ξ2i−1ξ2i + ξ2
2m+1.

Thus, the correspondence vi 7→ v′′i is an isometry from (V, f) to (V ′, εf ′). Next suppose

f(
2m+1∑
i=1

ξivi) =
m∑

i=1

ξ2i−1ξ2i + εξ2
2m+1,

f ′(
2m+1∑
i=1

ξiv
′
i) =

m∑
i=1

ξ2i−1ξ2i + ξ2
2m+1.

By the above argument, there exists an isometry from (V ′, f ′) to (V, εf). This implies
the existence of an isometry from (V, ε2f) to (V ′, εf ′). Since there is an isometry from
(V, f) to (V, ε2f), we obtain the desired isometry from (V, f) to (V ′, εf ′).
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Proposition 2.7 The two quadratic forms given in (2.1) and (2.2) are not equivalent to
each other.

Proof. Let f, f ′ be the quadratic forms given in (2.1), (2.2), respectively. Suppose that
σ : (V, f) −→ (V, f ′) is an isometry and write σ(vj) =

∑2m+1
i=1 αijvi, A = (αij). Then

Bf (vi, vj) = Bf ′(σ(vi), σ(vj))

=
2m+1∑
k=1

2m+1∑
l=1

αkiαljBf ′(vk, vl),

(Bf (vi, vj)) = tA(Bf ′(vi, vj))A.

Taking the determinants, we find (−1)m = (detA)2(−1)mε. This is a contradiction since
ε is a non-square.

Lemma 2.8 Let f be a non-degenerate quadratic form on a vector space V of dimension
2 over K with chK 6= 2. Let ε be a non-square in K. Suppose that the Witt index of f
is zero. Then there exists a basis {v1, v2} of V such that

f(ξ1v1 + ξ2v2) = ξ2
1 − εξ2

2 .

Proof. If v is a nonzero vector, then f(v) 6= 0, so Bf (v, v) 6= 0. This implies that Bf |〈v〉
is non-degenerate. By Proposition 1.3 we have V = 〈v〉 ⊥ 〈v〉⊥. Since dim〈v〉⊥ = 1,
we may put 〈w〉 = 〈v〉⊥. We claim that there exists a vector v1 with f(v1) = 1. If
f(v) or f(w) is a square, say f(v) = α2 or f(w) = α2, then we may put v1 = α−1v
or v1 = α−1w, respectively. If neither f(v) nor f(w) is a square, then we can write
f(v) = εα2, f(w) = εβ2 for some α, β ∈ K. By Lemma 2.2, there exist elements
λ, µ ∈ K such that ε−1 = λ2 + µ2. Defining v1 = λ

α
v + µ

β
w, we find f(v1) = 1.

Now V = 〈v1〉 ⊥ 〈v1〉⊥, and put 〈u〉 = 〈v1〉⊥. If −f(u) is a square, say −f(u) = α2,
then f(αv1 +u) = α2f(v1)+ f(u) = 0, contradicting to the fact that the Witt index of f
is zero. Thus −f(u) is a non-square, that is, f(u) = −εα2 for some α ∈ K. If we define
v2 by v2 = α−1u, then we obtain f(v2) = −ε and f(ξ1v1 + ξ2v2) = ξ2

1 − εξ2
2 as desired.

Lemma 2.9 Let K be a finite field of characteristic 2.

(i) The mapping ϕ : K −→ K defined by ϕ(α) = α2 +α is an additive homomorphism,
and its image Imϕ is a subgroup of K of index 2.

(ii) If α, β ∈ K and the polynomials t2 + t+α, t2 + t+β ∈ K[t] are irreducible over K,
then there exists an element λ ∈ K such that α = λ2 + λ+ β.

Proof. (i) Clearly ϕ is an additive homomorphism:

ϕ(α+ β) = (α+ β)2 + (α+ β) = α2 + β2 + α+ β = ϕ(α) + ϕ(β).

If α ∈ Kerϕ, then α(α + 1) = 0, hence Kerϕ = {0, 1}. Thus |Imϕ| = |K|/|Kerϕ| =
|K|/2.

(ii) Note that the polynomial t2 + t+ α is irreducible over K if and only if α 6∈ Imϕ.
Thus, if both t2 + t+α and t2 + t+β are irreducible over K, then α 6∈ Imϕ and β 6∈ Imϕ.
By (i), it follows that α ∈ Imϕ+ β, proving the assertion.
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Lemma 2.10 Let f be a non-degenerate quadratic form on a vector space V of dimension
2 over K with chK = 2. Let α be an element of K such that the polynomial t2 + t+α is
irreducible over K. Suppose that the Witt index of f is zero. Then there exists a basis
{v1, v2} of V such that

f(ξ1v1 + ξ2v2) = ξ2
1 + ξ1ξ2 + αξ2

2 .

Proof. If v is a nonzero vector, then f(v) 6= 0. Defining v1 =
√
f(v)

−1
v, we have f(v1) =

1. Since Bf is non-degenerate by Proposition 1.6, there exists a vector w such that
Bf (v1, w) 6= 0. Since Bf (v1, v1) = 0, we see w 6∈ 〈v1〉, hence V = 〈v1〉⊕ 〈w〉. Replacing w
byBf (v1, w)−1w, we may assumeBf (v1, w) = 1. If t2+t+f(w) is reducible overK, that is,
if there exists an element ξ such that ξ2+ξ+f(w) = 0, then f(ξv1+w) = 0, contradicting
to the fact that the Witt index of f is zero. Thus t2 + t+ f(w) is irreducible over K, and
hence by Lemma 2.9 (ii), there exists an element λ ∈ K such that α = λ2 + λ + f(w).
Put v2 = λv1 + w. Then {v1, v2} is a basis of V and,

f(ξ1v1 + ξ2v2) = ξ2
1f(v1) + ξ2

2f(v2) + ξ1ξ2Bf (v1, v2)

= ξ2
1 + ξ2

2f(λv1 + w) + ξ1ξ2Bf (v1, λv1 + w)

= ξ2
1 + ξ2

2(λ
2 + f(w) + λ) + ξ1ξ2

= ξ2
1 + ξ1ξ2 + αξ2

2 ,

as desired.

Theorem 2.11 Let f be a non-degenerate quadratic form on V with dimV = 2m. Then
one of the following occurs.

(i) f has Witt index m, and there exists a basis {v1, . . . , v2m} of V such that

f(
2m∑
i=1

ξivi) =
m∑

i=1

ξ2i−1ξ2i.

(ii) f has Witt index m− 1, and there exists a basis {v1, . . . , v2m} of V such that

(a) chK is odd, ε is a non-square in K, and

f(
2m∑
i=1

ξivi) =
m−1∑
i=1

ξ2i−1ξ2i + ξ2
2m−1 − εξ2

2m.

(b) chK = 2, t2 + t+ α is an irreducible polynomial over K, and

f(
2m∑
i=1

ξivi) =
m−1∑
i=1

ξ2i−1ξ2i + ξ2
2m−1 + ξ2m−1ξ2m + αξ2

2m.

Proof. Let d be the Witt index of f . By the second part of Proposition 2.4, we have d = m
or m− 1. Also by Proposition 2.4, there exist hyperbolic pairs {v2i−1, v2i} (i = 1, . . . , d)
such that

V = 〈v1, v2〉 ⊥ · · · ⊥ 〈v2d−1, v2d〉 ⊥ W,
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where W is a subspace containing no nonzero singular vectors, and dimW = 0 or 2. If
d = m, that is, dimW = 0, then we obtain the case (i). If d = m−1, that is, dimW = 2,
then W is non-degenerate by Proposition 1.3. Now we obtain the case (ii) by Lemma 2.8
and Lemma 2.10.

Corollary 2.12 Let f,f ′ be non-degenerate quadratic forms on vector spaces V, V ′, re-
spectively, over K with dimV = dimV ′ = 2m. If the Witt indices of f and f ′ coincide,
then f and f ′ are equivalent.

Proof. This follows immediately from Theorem 2.11. Note that the non-square ε and the
element α in Theorem 2.11 (ii) can be chosen to be a prescribed one.

Exercise. Show that the quadratic form f on GF(2)6 defined by the homogeneous poly-
nomial x2

1 + x2
5 + x2

6 + x1x2 + x3x4 + x4x6 + x5x6 is non-degenerate. Find the Witt index
of f .
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3 Dual polar spaces as distance-transitive graphs

In this section we introduce three types of dual polar spaces associated with non-degenerate
quadratic forms. We shall show that the dual polar spaces admit a natural metric in-
duced by a graph structure, and the orthogonal group, which is the group of isometries,
acts distance-transitively on the dual polar space.

Definition. Let f be a non-degenerate quadratic form on a vector space V over a field
K. The orthogonal group O(V, f) is the group of automorphisms of f . More precisely,

O(V, f) = {σ ∈ GL(V )|f(v) = f(σ(v)) for all v ∈ V }.

If V is a vector space of dimension 2m over a finite field K = GF(q), and f has Witt
index m or m − 1, we denote the orthogonal group O(V, f) by O+(2m, q), O−(2m, q),
respectively. Note that by Corollary 2.12, there is no ambiguity as to which quadratic
form we refer to; the groups O+(2m, q) and O−(2m, q) are determined up to conjugacy
in GL(V ). If V is a vector space of dimension 2m+ 1 over a finite field K = GF(q), we
denote the orthogonal group O(V, f) by O(2m+ 1, q). Again by Corollary 2.6 (i), there
is no ambiguity when chK = 2. If chK is odd, then any non-degenerate quadratic form
is equivalent to either f or εf , where ε is a non-square in K. Since O(V, f) = O(V, εf),
there is no ambiguity in this case either.

Definition. Let f be a non-degenerate quadratic form on a vector space V over a finite
field K = GF(q). A dual polar space is the set of all maximal singular subspaces of V :

X = {U |U is a maximal singular subspace of V }.

If f has Witt index d, then by Proposition 2.4, we see dimV = 2d + e, e = 0, 1 or 2.
Also by Proposition 2.1, X consists of subspaces of dimension d. We say that the dual
polar space is of type Dd(q), Bd(q) or 2Dd+1(q), according as e = 0, 1 or 2. By specifying
a type, a dual polar space is uniquely determined up to the action of GL(V ). Indeed by
Corollary 2.6 and Corollary 2.12, the only case we must consider is where dimV and q
are both odd. Then any non-degenerate quadratic form is equivalent to either f or εf ,
where ε is a non-square in K = GF(q). A subspace is singular with respect to f if and
only if it is singular with respect to εf , so there is no ambiguity in the definition of X.

The usual definition of dual polar space includes those coming from an alternating
bilinear form and a hermitian form. In this lecture, however, we restrict our attention to
the dual polar space of the above three types.

For the remainder of this section, we denote by X the dual polar space defined by a
non-degenerate quadratic form f on V of Witt index d.

Lemma 3.1 Let U1, U2 ∈ X and dimU1 ∩ U2 = d− k. Then there exist hyperbolic pairs
{u2i−1, u2i} (i = 1, . . . , k) such that

U1 = 〈u1, u3, . . . , u2k−1〉 ⊥ U1 ∩ U2,

U2 = 〈u2, u4, . . . , u2k〉 ⊥ U1 ∩ U2,

and
U1 + U2 = 〈u1, u2〉 ⊥ · · · ⊥ 〈u2k−1, u2k〉 ⊥ U1 ∩ U2.
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Proof. The assertion is trivial if U1 = U2, so let us assume U1 6= U2. We prove by induction
on d. The case d = 0 is again trivial. Suppose d ≥ 1. Pick a vector u1 ∈ U1 with u1 6∈ U2.
Then u1 6∈ U⊥

2 , since otherwise U2 ⊥ 〈u1〉 would be a singular subspace, contradicting the
maximality of U2. Thus there exists a vector u2 ∈ U2 not orthogonal to u1. Replacing
u2 by Bf (u1, u2)

−1u2, we obtain a hyperbolic pair {u1, u2}. By Proposition 1.3, we have
V = P ⊥ P⊥ and f |P⊥ is non-degenerate, where P = 〈u1, u2〉. Since f is non-degenerate
and f(u2) = 0, 〈u2〉⊥ is a hyperplane of V by Lemma 1.4. Also 〈u2〉⊥ does not contain U1

since u1 6∈ 〈u2〉⊥. It follows that dimU1∩P⊥ = dimU1∩〈u1〉⊥∩〈u2〉⊥ = dimU1∩〈u2〉⊥ =
d − 1. This implies that U1 ∩ P⊥ is a maximal singular subspace of (P⊥, f |P⊥), since
the Witt index of f |P⊥ cannot exceed d − 1. Similarly, U2 ∩ P⊥ is a maximal singular
subspace of (P⊥, f |P⊥), and U1∩U2∩P⊥ = U1∩U2. The induction hypothesis applied to
U1 ∩ P⊥ and U2 ∩ P⊥ implies the existence of hyperbolic pairs {u2i−1, u2i} (i = 2, . . . , k)
such that

U1 ∩ P⊥ = 〈u3, u5, . . . , u2k−1〉 ⊥ U1 ∩ U2,

U2 ∩ P⊥ = 〈u4, u6, . . . , u2k〉 ⊥ U1 ∩ U2,

and
U1 ∩ P⊥ + U2 ∩ P⊥ = 〈u3, u4〉 ⊥ · · · ⊥ 〈u2k−1, u2k〉 ⊥ U1 ∩ U2.

Since U1 = 〈u1〉 ⊥ U1 ∩ P⊥ and U2 = 〈u2〉 ⊥ U2 ∩ P⊥, we obtain the desired result.

Theorem 3.2 If U1, U2, U
′
1, U

′
2 ∈ X and dimU1 ∩U2 = dimU ′

1 ∩U ′
2, then there exists an

isometry σ of V such that σ(U1) = U ′
1, σ(U2) = U ′

2.

Proof. Suppose dimU1 ∩ U2 = d − k. Then by Lemma 3.1, there exist hyperbolic pairs
{v2i−1, v2i} (i = 1, . . . , k) such that

U1 = 〈v1, v3, . . . , v2k−1〉 ⊥ U1 ∩ U2,

U2 = 〈v2, v4, . . . , v2k〉 ⊥ U1 ∩ U2,

and
U1 + U2 = H ⊥ U1 ∩ U2,

where H = 〈v1, v2〉 ⊥ · · · ⊥ 〈v2k−1, v2k〉. By Proposition 1.3, we have V = H ⊥ H⊥ and
H⊥ is non-degenerate. Also, H⊥ contains a singular subspace U1∩U2 of dimension d−k.
It follows that U1 ∩ U2 is a maximal singular subspace of H⊥ and f |H⊥ has Witt index
d− k. By Proposition 2.4, there exist hyperbolic pairs {v2i−1, v2i} (i = k+ 1, . . . , d) such
that

U1 ∩ U2 = 〈v2k+1, v2k+3, . . . , v2d−1〉,

H⊥ = 〈v2k+1, v2k+2〉 ⊥ · · · ⊥ 〈v2d−1, v2d〉 ⊥ W,

where W is a subspace containing no nonzero singular vectors, and dimW = 0, 1 or 2.
Therefore,

V = 〈v1, v2〉 ⊥ · · · ⊥ 〈v2d−1, v2d〉 ⊥ W.

Similarly, we can find hyperbolic pairs {v′2i−1, v
′
2i} (i = 1, . . . , d) such that

V = 〈v′1, v′2〉 ⊥ · · · ⊥ 〈v′2d−1, v
′
2d〉 ⊥ W ′,
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where W is a subspace containing no nonzero singular vectors, dimW = 0, 1 or 2,

U ′
1 = 〈v′1, v′3, . . . , v′2k−1〉 ⊥ U ′

1 ∩ U ′
2,

U ′
2 = 〈v′2, v′4, . . . , v′2k〉 ⊥ U ′

1 ∩ U ′
2,

U ′
1 ∩ U ′

2 = 〈v′2k+1, v
′
2k+3, . . . , v

′
2d−1〉.

We want to show that f |W and f |W ′ are equivalent. This is the case if dimW = dimW ′ =
0 or 2, by Corollary 2.12. If dimW = dimW ′ = 1, and f |W is not equivalent to f |W ′ ,
then f would be equivalent to both quadratic forms (2.1) and (2.2). This contradicts
to Proposition 2.7. Therefore, there exists an isometry from W to W ′. Extending this
isometry by defining vi 7→ v′i (i = 1, . . . , 2d), we obtain the desired isometry.

The dual polar space becomes a metric space by defining a metric ∂ by ∂(U1, U2) =
d− dimU1 ∩ U2. In order to check that ∂ is a metric, we need to verify the following.

(i) ∂(U1, U2) ≥ 0,

(ii) ∂(U1, U2) = 0 if an only if U1 = U2,

(iii) ∂(U1, U2) = ∂(U2, U1),

(iv) ∂(U1, U2) + ∂(U2, U3) ≥ ∂(U1, U3).

All but (iv) are obvious. The property (iv) is a consequence of the following lemma.

Lemma 3.3 Let U1, U2, U3 ∈ X. Then we have

dimU1 ∩ U2 + dimU2 ∩ U3 ≤ d+ dimU1 ∩ U3. (3.1)

Moreover, equality holds if and only if U1 ∩ U3 ⊂ U2 = U1 ∩ U2 + U2 ∩ U3.

Proof. We have

dimU1 ∩ U2 + dimU2 ∩ U3

= dim(U1 ∩ U2 + U2 ∩ U3) + dimU1 ∩ U2 ∩ U3

≤ dimU2 + dimU1 ∩ U3

= d+ dimU1 ∩ U3.

Moreover, equality holds if and only if U1∩U2 +U2∩U3 = U2 and U1∩U2∩U3 = U1∩U3.

Lemma 3.4 Let U1, U2, U3 ∈ X. If U2 = U1 ∩ U2 + U2 ∩ U3, then U1 ∩ U3 ⊂ U2. In
particular, equality in (3.1) holds if and only if U2 = U1 ∩ U2 + U2 ∩ U3.
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Proof. Since

U1 ∩ U3 ⊂ U⊥
1 ∩ U⊥

3

⊂ (U1 ∩ U2)
⊥ ∩ (U2 ∩ U3)

⊥

= (U1 ∩ U2 + U2 ∩ U3)
⊥

= U⊥
2 ,

the subspace U1 ∩U3 +U2 is singular. By the maximality of U2, we obtain U1 ∩U3 ⊂ U2.

Our next task is to show that this metric coincides with the distance in a graph
defined on X.

Definition. The dual polar graph of type Dd(q), Bd(q),
2Dd+1(q) is the graph with the

dual polar space X of type Dd(q), Bd(q),
2Dd+1(q), respectively, as the vertex set, where

two vertices U1, U2 ∈ X are adjacent if and only if dimU1 ∩ U2 = d− 1.

In a graph, the distance between two vertices is the minimum of the length of paths
joining the two vertices.

Lemma 3.5 Let W0,W1, . . . ,Wk ∈ X be a path, that is, (Wi−1,Wi) is an edge of the
dual polar graph for all i = 1, . . . , k. Then dimW0 ∩Wk + k ≥ d.

Proof. We prove by induction on k. If k = 0 the assertion is trivial. Suppose k > 1. By
induction we have dimW0 ∩Wk−1 + k − 1 ≥ d, so that

dimW0 ∩Wk + k ≥ dimW0 ∩Wk−1 ∩Wk + k

= dimW0 ∩Wk−1 + dimWk−1 ∩Wk

− dim(W0 ∩Wk−1 +Wk−1 ∩Wk) + k

≥ (d− k + 1) + (d− 1)− dimWk−1 + k

= d,

as desired.

Proposition 3.6 The metric ∂ on the dual polar space X coincides with the distance in
the dual polar graph on X.

Proof. Let U1, U2 ∈ X and ∂(U1, U2) = j. By Lemma 3.1, there exist hyperbolic pairs
{u2i−1, u2i} (i = 1, . . . , j) such that

U1 = 〈u1, u3, . . . , u2j−1〉 ⊥ (U1 ∩ U2),

U2 = 〈u2, u4, . . . , u2j〉 ⊥ (U1 ∩ U2).

and
U1 + U2 = 〈u1, u2〉 ⊥ · · · ⊥ 〈u2j−1, u2j〉 ⊥ (U1 ∩ U2).
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Define a sequence of singular subspaces W0, . . . ,Wj by

W0 = 〈u1, u3, . . . , u2j−1〉 ⊥ (U1 ∩ U2) = U1,

W1 = 〈u2, u3, . . . , u2j−1〉 ⊥ (U1 ∩ U2),
...

Wj−1 = 〈u2, u4, . . . , u2j−2, u2j−1〉 ⊥ (U1 ∩ U2),

Wj = 〈u2, u4, . . . , u2j−2, u2j〉 ⊥ (U1 ∩ U2) = U2.

Then each pair (Wi,Wi+1) is adjacent in the dual polar graph. Thus the distance between
U1 and U2 in the dual polar graph is at most j.

Conversely, let U1 = W0, . . . ,Wk = U2 be a path of length k joining U1 and U2. By
Lemma 3.5, we have k ≥ d − dimW0 ∩ Wk = ∂(U1, U2) = j. Therefore, the distance
between U1 and U2 in the dual polar graph is exactly j.

Definition. Let Γ be a connected graph whose distance is denoted by ∂. The graph Γ
is called distance-transitive if, for any vertices x, x′, y, y′ with ∂(x, y) = ∂(x′, y′), there
exists an automorphism σ of Γ such that σ(x) = x′ and σ(y) = y′.

Theorem 3.7 The dual polar graph is distance-transitive.

Proof. This follows immediately from Theorem 3.2 and Proposition 3.6.
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4 Computation of parameters

Definition. Let Γ be a graph. We denote by Γi(x) the set of vertices of Γ which are
distance i from x. We also write Γ(x) = Γ1(x). A connected graph is called distance-
regular if, for any vertices x, y with y ∈ Γi(x), |Γi+1(x)∩Γ(y)| = bi and |Γi−1(x)∩Γ(y)| =
ci hold, where bi and ci depend only on i and independent of the vertices x, y. If Γ has
diameter d, then the numbers bi (0 ≤ i ≤ d − 1) and ci (1 ≤ i ≤ d) are called the
parameters of the distance-regular graph Γ.

Clearly, a distance-transitive graph is distance-regular. In particular, the dual polar
graph is distance-regular of diameter d, where d is the Witt index. In this section we
compute the parameters of dual polar graphs explicitly.

Definition. If V is a vector space of dimension n over GF(q), then the number of m-

dimensional subspaces of V is denoted by
[

n
m

]
. As is well-known, we have

[
n

m

]
=

(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)
, (4.1)[

n

m

]
=

[
n

n−m

]
. (4.2)

Indeed, counting in two ways the number of elements in the set

{(v1, v2, . . . , vm, U)|U = 〈v1, v2, . . . , vm〉, dimU = m}

we obtain

(qn − 1)(qn − q) · · · (qn − qm−1) =

[
n

m

]
(qm − 1)(qm − q) · · · (qm − qm−1),

from which (4.1) follows. The equality (4.2) follows immediately from (4.1).
For the remainder of this section, we assume that f is a non-degenerate quadratic

form of Witt index d on a vector space V over GF(q), and dimV = 2d + e, e = 0, 1, 2.
We begin by counting the number of singular vectors.

Proposition 4.1 The number of singular vectors in V is given by

q2d+e−1 − qd+e−1 + qd.

Proof. We prove by induction on d. The case d = 0 is trivial. Suppose d ≥ 1. By
Proposition 2.4, we can write V = P1 ⊥ P2 ⊥ · · · ⊥ Pd ⊥ W , where Pi (i = 1, . . . , d) are
hyperbolic planes, W is a subspace containing no nonzero singular vectors, dimW = e.
Let {v1, v2} be a hyperbolic pair spanning P1, and put V ′ = P2 ⊥ · · · ⊥ Pd ⊥ W . Then
by induction, the number of singular vectors in V ′ is q2d+e−3 − qd+e−2 + qd−1. Thus the
number of singular vectors in V is given by

|{v ∈ V |f(v) = 0}|
= |{λ1v1 + λ2v2 + v′|λ1, λ2 ∈ K, v′ ∈ V ′, λ1λ2 + f(v′) = 0}|
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= |{λ1v1 + λ2v2 + v′|λ1, λ2 ∈ K, v′ ∈ V ′, λ1λ2 = 0, f(v′) = 0}|
+|{λ1v1 + λ2v2 + v′|λ1, λ2 ∈ K, v′ ∈ V ′, λ1λ2 = −f(v′) 6= 0}|

= (2q − 1)|{v′ ∈ V ′|f(v′) = 0}|
+(q − 1)(qdim V ′ − |{v′ ∈ V ′|f(v′) = 0}|)

= qdim V ′
(q − 1) + q|{v′ ∈ V ′|f(v′) = 0}|

= q2(d−1)+e(q − 1) + q(q2d+e−3 − qd+e−2 + qd−1)

= q2d+e−1 − qd+e−1 + qd.

as desired.

Lemma 4.2 If W is a singular subspaces of V , then f induces a non-degenerate quad-
ratic form of Witt index d − dimW on W⊥/W . There is a one-to-one correspondence
between singular subspaces of W⊥/W and singular subspaces of V containing W .

Proof. First note that f(v + w) = f(v) for any v ∈ W⊥ and w ∈ W . Thus the mapping
f̄ : W⊥/W −→ K, f̄(v + w) = f(v) is well-defined. One checks easily that f̄ is a quad-
ratic form. If v+W ∈ Rad f̄ , then f(v) = 0 and Bf̄ (v+W, v′ +W ) = 0 for all v′ ∈ W⊥.
Since

Bf̄ (v +W, v′ +W ) = f̄((v +W ) + (v′ +W ))− f̄(v +W )− f̄(v′ +W )

= f(v + v′)− f(v)− f(v′)

= Bf (v, v
′),

it follows that v ∈ Rad (f |W⊥). By Lemma 1.4, we have v ∈ W . Therefore, Rad f̄ = 0.
Note that any singular subspace containing W is contained in W⊥. Note also that
there is a one-to-one correspondence between subspaces of W⊥/W and subspaces of W⊥

containing W . Clearly, singular subspaces of W⊥/W correspond to singular subspaces
of W⊥ containing W .

Proposition 4.3 The number of singular k-dimensional subspaces of V is given by[
d

k

]
k−1∏
i=0

(qd+e−i−1 + 1).

Proof. We prove by induction on k. The case k = 0 is trivial. Suppose that the formula
is valid up to k. We want to count the number of elements in the set

S = {(U, Ũ)|U, Ũ are singular, dimU = k, dim Ũ = k + 1 and U ⊂ Ũ}.

Clearly

|S| = |{Ũ |Ũ is singular, dim Ũ = k + 1}|
[
k + 1

k

]
.

By Lemma 4.2 and induction, we have

|S| = |{U |U is singular, dimU = k}|
× |{W̄ ⊂ U⊥/U |W̄ is singular, dim W̄ = 1}|

=

[
d

k

]
k−1∏
i=0

(qd+e−i−1 + 1)
(qd−k − 1)(qd−k+e−1 + 1)

q − 1
.
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Therefore, the number of singular (k + 1)-dimensional subspaces is[
d

k

]
k−1∏
i=0

(qd+e−i−1 + 1)
(qd−k − 1)(qd−k+e−1 + 1)

q − 1

q − 1

qk+1 − 1

=
(qd − 1) · · · (qd−k+1 − 1)(qd−k − 1)

(qk+1 − 1)(qk − 1) · · · (q − 1)

k∏
i=0

(qd+e−i−1 + 1)

=

[
d

k + 1

]
k∏

i=0

(qd+e−i−1 + 1),

as desired.

Theorem 4.4 Let Γ be the dual polar graph with vertex set X consisting of the maximal
singular subspaces of V . Then Γ is a distance-regular graph with parameters

bi =
qi+e(qd−i − 1)

q − 1
(i = 0, . . . , d− 1), (4.3)

ci =
qi − 1

q − 1
(i = 1, . . . , d), (4.4)

Proof. Let U1, U2 ∈ X and ∂(U1, U2) = i. To prove (4.3), assume 0 ≤ i ≤ d− 1 and put

Y = {(W,U)|U ∈ X, dimU ∩ U1 = d− i− 1, W = U ∩ U2, dimW = d− 1}.

Clearly the correspondence (W,U) 7→ U , Y −→ Γi+1(U1) ∩ Γ(U2) is a bijection, so
|Y | = bi. If (W,U) ∈ Y , then W is a hyperplane of U2. Moreover, since W ∩ (U1 ∩U2) =
U ∩ U1 ∩ U2 ⊂ U ∩ U1 and dimU ∩ U1 = d − i − 1 < d − i = dimU1 ∩ U2, W does not
contain U1 ∩ U2. Let Z be the set of such subspaces W , that is,

Z = {W |W ⊂ U2, dimW = d− 1, W 6⊃ U1 ∩ U2}.

For W ∈ Z, set
YW = {U ∈ X|W ⊂ U 6= U2}.

Note that if U ∈ YW , then W = U ∩ U2. Indeed, W ⊂ U ∩ U2 and dimW = d − 1,
dimU ∩ U2 < d. Thus the sets YW (W ∈ Z) are mutually disjoint. We want to show

Y =
⋃

W∈Z

{(W,U)|U ∈ YW}. (4.5)

We have already shown that Y is contained in the right hand side. To prove the reverse
containment, pick W ∈ Z and U ∈ YW . Then W = U ∩ U2. Since W = U ∩ U2 is a
hyperplane of U2 not containing U1∩U2, we have U2 = U ∩U2 +U1∩U2. By Lemma 3.4,
we have

dimU ∩ U2 + dimU1 ∩ U2 = d+ dimU ∩ U1.

In other words, dimU ∩U1 = d− i−1, which establishes (W,U) ∈ Y . This completes the
proof of (4.5). Now |Y | can be computed as follows. Note that there exists a one-to-one
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correspondence between singular d-dimensional subspaces containing W and singular 1-
dimensional subspaces in W⊥/W in the sense of Lemma 4.2. Since W⊥/W has Witt
index 1 and dimension 2 + e, the number of singular 1-dimensional subspaces in W⊥/W
is qe + 1 by Proposition 4.3. It follows that |YW | = qe for any W ∈ Z and hence

|Z| =
[

d

d− 1

]
−
[

i

i− 1

]
=
qd − qi

q − 1
,

|Y | = qe+i(qd−i − 1)

q − 1
.

This proves the formula (4.3).
To prove (4.4), assume 1 ≤ i ≤ d and set

Y = {W |U1 ∩ U2 ⊂ W ⊂ U2, dimW = d− 1}.

We want to show that the mapping ϕ : Γi−1(U1)∩Γ(U2) −→ Y , U 7→ U∩U2 is a bijection.
If U ∈ Γi−1(U1)∩Γ(U2), then by the second part of Lemma 3.3 we see U1∩U2 ⊂ U . Thus
we have U1 ∩ U2 ⊂ U ∩ U2 ⊂ U2 which shows that ϕ is well-defined. We shall show that
the inverse mapping of ϕ is given by ψ : Y −→ Γi−1(U1) ∩ Γ(U2), W 7→ W +W⊥ ∩ U1.
First note that W ∩ U1 = U1 ∩ U2 for any W ∈ Y . By Lemma 1.4,

dimW⊥ ∩ U1 = dimW⊥ + dimU1 − dim(W⊥ + U1)

≥ dimV − dimW + d− dim((U1 ∩ U2)
⊥ + U1)

= dimV + 1− dim(U1 ∩ U2)
⊥

= 1 + dimU1 ∩ U2

= d− i+ 1. (4.6)

Thus

dim(W +W⊥ ∩ U1) = dimW + dimW⊥ ∩ U1 − dimW ∩W⊥ ∩ U1

≥ (d− 1) + (d− i+ 1)− dimW ∩ U1

= 2d− i− dimU1 ∩ U2

= d.

Clearly W +W⊥ ∩U1 is singular, so dim(W +W⊥ ∩U1) = d and equality in (4.6) holds.
This means (W +W⊥∩U1)∩U1 = W ∩U1 +W⊥∩U1 = W⊥∩U1 has dimension d− i+1,
that is, W +W⊥ ∩U1 ∈ Γi−1(U1). Also (W +W⊥ ∩U1)∩U2 = W +W⊥ ∩U1 ∩U2 = W .
This shows W +W⊥ ∩ U1 ∈ Γ(U2), and at the same time ϕ ◦ ψ is the identity mapping
on Y . It remains to show ψ ◦ϕ(U) = U for all U ∈ Γi−1(U1)∩Γ(U2). By Lemma 3.3, we
have

U = U ∩ U2 + U ∩ U1

⊂ U ∩ U2 + (U ∩ U2)
⊥ ∩ U1

= ψ ◦ ϕ(U).
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Since we already know ψ ◦ ϕ(U) ∈ X, this forces U = ψ ◦ ϕ(U). Therefore, we have
established a one-to-one correspondence between Y and Γi−1(U1) ∩ Γ(U2). Since the set
Y is in one-to-one correspondence with the set of hyperplanes in U2/U1 ∩ U2, we see

ci = |Γi−1(U1) ∩ Γ(U2)| = |Y | =
[

i

i− 1

]
=
qi − 1

q − 1
.

This completes the proof.

Definition. A graph is called complete (or clique) if any two of its vertices are adjacent.
A coclique is a graph in which no two vertices are adjacent. A graph is called bipartite
if its vertex set can be partitioned into two cocliques.

Theorem 4.5 The dual polar graph of type Dd(q) is bipartite.

Proof. Fix a vertex U ∈ X. By Theorem 4.4,

bi + ci =
qi(qd−i − 1)

q − 1
+
qi − 1

q − 1
=
qd − 1

q − 1
= b0 (i = 0, 1, . . . , d),

with the convention bd = c0 = 0. This implies that Γi(U) is a coclique for every i =
0, 1, . . . , d. Thus X is partitioned into the sets

X1 = Γ1(U) ∪ Γ3(U) ∪ · · · ,

X2 = {U} ∪ Γ2(U) ∪ Γ4(U) ∪ · · · ,

which are cocliques.
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5 Structure of subconstituents

In this section we discuss the structure of the subconstituents Γ(U) and Γd(U) of the
dual polar graph Γ of diameter d. As before, let f be a non-degenerate quadratic form
of Witt index d on a vector space V over GF(q), and dimV = 2d + e, e = 0, 1, 2. Let Γ
be the dual polar graph with vertex set X consisting of the maximal singular subspaces
of V .

Theorem 5.1 Let U1 ∈ X. The subgraph Γ(U1) is the disjoint union of cliques

{U ∈ X|W ⊂ U 6= U1} (W ⊂ U, dimW = d− 1), (5.1)

without edges joining them, each of which has size qe.

Proof. Clearly, the sets (5.1) are mutually disjoint cliques. By Lemma 4.2, the number
of elements in X containing W is the same as the number of singular 1-dimensional
subspace in W⊥/W , which is, by Proposition 4.3, qe + 1. Thus we see that each of the
sets (5.1) has size qe. By Theorem 4.4, the valency of Γ(U1) is

b0 − b1 − c1 =
qe(qd − 1)

q − 1
− qe+1(qd−1 − 1)

q − 1
− 1 = qe − 1.

This implies that there are no edges in Γ(U1) other than those contained in some subset
of the form (5.1).

Definition. The graph of alternating bilinear form Alt(d, q) has

Y = {A|A is an alternating matrix with entries in GF(q)}

as vertex set, two vertices A,B are adjacent whenever rank(A−B) = 2.

Theorem 5.2 Let Γ be the dual polar graph of type Dd(q), U0 a vertex of Γ. Let ∆
be the graph with vertex set Γd(U0), where two vertices U1, U2 are adjacent whenever
dimU1 ∩ U2 = d− 2. Then ∆ is isomorphic to Alt(d, q).

Proof. In view of Theorem 2.11, we may assume the quadratic form f is defined by

f(
2d∑
i=1

ξiui) =
d∑

i=1

ξiξd+i,

where {u1, u2, . . . , u2d} is a basis of V . Also by Theorem 3.2 we may assume U0 =
〈u1, u2, . . . , ud〉. Define a mapping ϕ from Y to Γd(U0) by

A = (aij) 7→ 〈
d∑

i=1

aijui + ud+j|j = 1, 2, . . . , d〉.

Since

f(
d∑

i=1

aijui + ud+j) = Bf (
d∑

i=1

aijui, ud+j) = ajj, (5.2)
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Bf (
d∑

i=1

aijui + ud+j,
d∑

i=1

aikui + ud+k)

= Bf (
d∑

i=1

aijui, ud+k) +Bf (ud+j,
d∑

i=1

aikui)

= akj + ajk, (5.3)

and (aij) is alternating, we see that ϕ(A) is singular. One checks easily dimϕ(A) = d
and U0 ∩ ϕ(A) = 0. Thus we have shown that ϕ is well-defined. Next we show that ϕ is
injective. Suppose ϕ((aij)) = ϕ((bij)). Then we have

d∑
i=1

aijui + ud+j =
d∑

k=1

λk(
d∑

i=1

bikui + ud+k)

for some λk ∈ GF(q). Comparing the coefficients of ud+k for k = 1, . . . , d, we find λk = δjk
and

∑d
i=1 aijui =

∑d
i=1 bijui. This implies aij = bij, hence ϕ is injective. Next we show

that ϕ is surjective. Suppose U ∈ Γd(U0). Let {v1, . . . , vd} be a basis of U and write

vj =
d∑

i=1

bijui +
d∑

i=1

cijud+i (j = 1, 2, . . . , d).

If the d× d matrix C = (cij) is singular, then there exists a nonzero vector (α1, . . . , αd)
∈ GF(q)d such that

∑d
j=0 αjcij = 0 for all i = 1, . . . , d. But this implies 0 6= ∑d

j=0 αjvj ∈
U0 ∩ U , which is a contradiction. Thus C is nonsingular. Put A = (aij) = (bij)C

−1 and
wk =

∑d
i=1 aikui + ud+k (k = 1, . . . , d). Then

wk =
d∑

i=1

d∑
j=1

bij(C
−1)jkui +

d∑
i=1

δikud+i

=
d∑

j=1

(C−1)jk

d∑
i=1

bijui +
d∑

i=1

d∑
j=1

cij(C
−1)jkud+i

=
d∑

j=1

(C−1)jkvj,

so that {w1, . . . , wd} is a basis of U . Since U is singular, (5.2) and (5.3) imply that A
is alternating. This shows ϕ(A) = U , proving the surjectivity. Finally we want to prove
that ϕ preserves adjacency. Let A,B ∈ Y . Then

dimϕ(A) ∩ ϕ(B) = 2d− dim(ϕ(A) + ϕ(B))

= 2d− rank

(
A B
I I

)

= 2d− rank

(
A−B B

0 I

)
= d− rank(A−B).

This implies rank(A−B) = 2 if and only if dimϕ(A)∩ϕ(B) = d− 2. Therefore, ϕ is an
isomorphism of the graphs Alt(d, q) and ∆.
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Definition. Let Γ be a bipartite graph whose vertex set X has a bipartition X1 ∪X2. A
bipartite half of Γ is the graph with vertex set X1, and two vertices are adjacent if and
only if their distance in Γ is 2.

Theorem 5.3 Let Γ̃,Γ be the dual polar graphs of type Dd+1(q), Bd(q), respectively. Let
Λ̃ be a bipartite half of Γ̃, and let Λ be the graph with the same vertex set as Γ, and two
vertices U1, U2 of Λ are adjacent whenever dimU1 ∩ U2 = d − 1 or d − 2. Then Λ̃ is
isomorphic to Λ. Choose a vertex Ũ0 of Γ̃ such that Γ̃d+1(Ũ0) is contained in the vertex
set of Λ̃, and pick a vertex U0 of Γ. Let ∆̃ be the subgraph of Λ̃ induced on Γ̃d+1(Ũ0), and
let ∆ be the subgraph of Λ induced on Γd(U0). Then ∆̃ is isomorphic to ∆.

Proof. Let f be a non-degenerate quadratic form of Witt index d + 1 on Ṽ , where
dim Ṽ = 2d+ 2. We may assume that f is given by

f(
2d+2∑
i=1

ξiui) =
d∑

i=1

ξiξd+i + ξ2d+1ξ2d+2.

where {u1, . . . , u2d+2} is a basis of Ṽ . Let Γ̃ be the dual polar graph of type Dd+1(q) with
vertex set X̃ consisting of the maximal singular subspaces of Ṽ . We may assume Ũ0 =
〈u1, u2, . . . , ud, u2d+1〉, and that Λ̃ is the bipartite half of Γ̃ with vertex set X̃1 containing
Γ̃d+1(Ũ0). Put v = u2d+1 + u2d+2, V = 〈v〉⊥. Since f(v) = 1, V is non-degenerate by
Proposition 1.3. Let Γ be the dual polar graph of type Bd(q) with vertex set X consisting
of the maximal singular subspaces of V . We may assume U0 = 〈u1, u2, . . . , ud〉. We define
a mapping ϕ : X̃1 −→ X by ϕ(Ũ) = Ũ ∩ V and show that ϕ is an isomorphism from Λ̃
to Λ.

Clearly, Ũ ∩V is a singular d-dimensional subspace of V for any Ũ ∈ X̃1. If Ũ1∩V =
Ũ2∩V for some Ũ1, Ũ2 ∈ X̃1, then dim Ũ1∩Ũ2 ≥ d. Since X̃1 is a coclique in Γ̃, this forces
Ũ1 = Ũ2. Thus ϕ is injective. If U ∈ X, then by Lemma 4.2, the number of elements in
X̃ containing U is the same as the number of singular 1-dimensional subspace in U⊥/U ,
which is 2 by Proposition 4.3. Let Ũ1, Ũ2 be the elements of X̃ containing U . Then Ũ1

and Ũ2 are adjacent in Γ̃. Thus one of Ũ1 or Ũ2 belongs to X̃1. Also U = Ũ1∩V = Ũ2∩V .
This proves the surjectivity of ϕ.

Suppose Ũ1, Ũ2 ∈ X̃1. Since ϕ(Ũ1) ∩ ϕ(Ũ2) = Ũ1 ∩ Ũ2 ∩ V , we have dim Ũ1 ∩ Ũ2 =
dimϕ(Ũ1) ∩ ϕ(Ũ2) or dimϕ(Ũ1) ∩ ϕ(Ũ2) + 1. Since d + 1 − dim Ũ1 ∩ Ũ2 = ∂(Ũ1, Ũ2) is
even, this implies that

dim Ũ1 ∩ Ũ2 = d− 1 ⇐⇒ dimϕ(Ũ1) ∩ ϕ(Ũ2) = d− 1 or d− 2.

Therefore, ϕ is an isomorphism from Λ̃ to Λ.
Let us restrict the isomorphism ϕ to Γ̃d+1(Ũ0). Note that ϕ(Ũ)∩U0 = Ũ ∩ Ũ0∩V for

any Ũ ∈ X̃1. Thus, in particular, ϕ(Ũ) ∈ Γd(U0) for any Ũ ∈ Γ̃d+1(Ũ0). Conversely, if
ϕ(Ũ) ∈ Γd(U0), then dim Ũ ∩ Ũ0 ≤ 1. This implies Ũ ∈ Γ̃d(Ũ0)∪ Γ̃d+1(Ũ0). Since Ũ ∈ X̃1,
we obtain Ũ ∈ Γ̃d+1(Ũ0). Therefore, ϕ induces a bijection between Γ̃d+1(Ũ0) and Γd(U0).
As ϕ is an isomorphism from Λ̃ to Λ, the restriction of ϕ to Γ̃d+1(Ũ0) is an isomorphism
from ∆̃ to ∆.

The graph Λ in Theorem 5.3 is known as the distance 1-or-2 graph of Γ, since two
vertices are adjacent in Λ if and only if their distance in Γ is 1 or 2, by Proposition 3.6.
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It is important to note, however, that the graph ∆ is not the distance 1-or-2 graph of the
subgraph induced on Γd(U0) by Γ. We shall determine which pair of vertices in Γd(U0)
at distance 2 apart in Γ are at distance 2 in the subgraph induced on Γd(U0) by Γ.

Proposition 5.4 Let Γ be the dual polar graph of type Bd(q) and let U0 be a vertex of
Γ. Suppose U1, U2 ∈ Γd(U0) and dimU1 ∩ U2 = d − 2. Then dim(U1 + U2) ∩ U0 = 1 or
2. Moreover, there exists a path of length 2 joining U1 and U2 in Γd(U0) if and only if
dimU0 ∩ (U1 + U2) = 1.

Proof. Since 2d = dim(U0 + U1) ≤ dim(U0 + U1 + U2) ≤ 2d+ 1, we have

dimU0 ∩ (U1 + U2) = dimU0 + dim(U1 + U2)− dim(U0 + U1 + U2)

= 2d+ 2− dim(U0 + U1 + U2)

= 1 or 2.

Suppose dimU0 ∩ (U1 + U2) = 1, say U0 ∩ (U1 + U2) = 〈u0〉. Since U1 ∩ U2 and
U1 ∩ 〈u0〉⊥ cannot cover U1, we can find a vector u1 ∈ U1 such that u1 6∈ U2, u1 6∈ 〈u0〉⊥.
Since dimU2 ∩〈u1〉⊥ = d− 1 > d− 2 = dimU1 ∩U2, we can find a vector u2 ∈ U2 ∩〈u1〉⊥
such that u2 6∈ U1. The subspace U = 〈u1, u2〉 ⊥ U1∩U2 is a singular subspace adjacent to
both U1 and U2. Since U ⊂ U1+U2, we have U0∩U ⊂ 〈u0〉. But we have u0 6∈ 〈u1〉⊥ ⊃ U ,
so that U0 ∩ U = 0. Therefore, (U1, U, U2) is a path of length 2 in Γd(U0) joining U1 and
U2.

Next suppose dimU0 ∩ (U1 + U2) = 2. Put H = U0 + U1 + U2. Then dimH = 2d,
hence H = U0 +U1, which is non-degenerate by Lemma 3.1. We can regard U0, U1, U2 as
vertices of the dual polar graph Σ of type Dd(q) defined on H, and then U1, U2 ∈ Σd(U0).
Suppose that there exists a path (U1, U, U2) of length 2 in Γd(U0). By Lemma 3.3 we have
U = U ∩ U1 + U ∩ U2 ⊂ U1 + U2 ⊂ H. This implies U ∈ Σd(U0). This is a contradiction
since Σd(U0) has no edge by Theorem 4.5.

Both cases in Proposition 5.4 do occur. With the notation of the proof of Theorem 5.3,
put

U1 = 〈ud+1, ud+2, . . . , u2d〉 ∈ Γd(U0),

U2 = 〈u2 + ud+1, u1 − ud+2, ud+3, . . . , u2d〉 ∈ Γd(U0).

Then dimU1 ∩ U2 = d− 2 and (U1 + U2) ∩ U0 = 〈u1, u2〉. If we put

U ′
2 = 〈u1 − ud+1 + v, u1 + ud+1 + u2 − ud+2, ud+3, . . . , u2d〉 ∈ Γd(U0),

then dimU1 ∩ U ′
2 = d− 2 and (U1 + U ′

2) ∩ U0 = 〈u1 + u2〉.
When q is a power of 2, the isomorphism between ∆̃ and ∆ exhibited in Theorem 5.3

gives rise to a mysterious nonlinear bijection between alternating matrices and symmetric
matrices of size one less.

Lemma 5.5 Let q be a power of 2 and A = (aij) be a symmetric d × d matrix with
entries in GF(q). Let a be the row vector whose entries are the square roots of the
diagonal entries of A: a = (

√
a11,

√
a22, . . . ,

√
add). Then the d × (d + 1) matrix (A ta)

has the same rank as A.
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Proof. Suppose that a vector b = (b1, b2, . . . , bd) is a left null vector of A:
∑d

i=1 biaij = 0
(j = 1, 2, . . . , d). Then we have

(
d∑

i=1

bi
√
aii)

2 =
d∑

i=1

b2i aii

=
d∑

i=1

b2i aii +
d∑

i<j

bibjaij +
d∑

i<j

bibjaij

=
d∑

i=1

b2i aii +
d∑

i6=j

bibjaij

=
d∑

j=1

bj
d∑

i=1

biaij

= 0.

This implies that b is also a left null vector of (A ta). Thus A and (A ta) has the same
left null space, so we obtain rankA = rank(A ta).

Definition. The graph of symmetric bilinear form Sym(d, q) has

Y = {A|A is an symmetric matrix with entries in GF(q)}

as vertex set, two vertices A,B are adjacent whenever rank(A−B) = 1.

Theorem 5.6 Let Γ be the dual polar graph of type Bd(q), U0 a vertex of Γ. If q is a
power of 2, then there exists an isomorphism ϕ from the graph Sym(d, q) to the subgraph
induced on Γd(U0) by Γ. Moreover, dimϕ(A) ∩ ϕ(B) = d − rank(A + B) holds for any
vertices A,B of Sym(d, q).

Proof. In view of Theorem 2.11 and the definition of dual polar space of type Bd(q), we
may assume that the quadratic form f is defined by

f(
2d+1∑
i=1

ξiui) =
d∑

i=1

ξiξd+i + ξ2
2d+1,

where {u1, u2, . . . , u2d+1} is a basis of V . Also by Theorem 3.2 we may assume U0 =
〈u1, u2, . . . , ud〉. Let Y be the set of vertices of Sym(d, q) and define a mapping ϕ from
Y to Γd(U0) by

A = (aij) 7→ 〈
d∑

i=1

aijui + ud+j +
√
ajju2d+1|j = 1, 2, . . . , d〉.

Since

f(
d∑

i=1

aijui + ud+j + βjju2d+1) = β2
jj +Bf (

d∑
i=1

aijui, ud+j)

= β2
jj + ajj, (5.4)
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Bf (
d∑

i=1

aijui + ud+j + βjju2d+1,
d∑

i=1

aikui + ud+k + βkku2d+1)

= Bf (
d∑

i=1

aijui, ud+k) +Bf (ud+j,
d∑

i=1

aikui)

= akj + ajk, (5.5)

and (aij) is symmetric, we see that ϕ(A) is singular. One checks easily dimϕ(A) = d
and U0 ∩ ϕ(A) = 0. Thus we have shown that ϕ is well-defined. Next we show that ϕ is
injective. Suppose ϕ((aij)) = ϕ((bij)). Then we have

d∑
i=1

aijui + ud+j +
√
ajju2d+1 =

d∑
k=1

λk(
d∑

i=1

bikui + ud+k +
√
bkku2d+1)

for some λk ∈ GF(q). Comparing the coefficients of ud+k for k = 1, . . . , d, we find λk = δjk
and

∑d
i=1 aijui =

∑d
i=1 bijui. This implies aij = bij, hence ϕ is injective. Next we show

that ϕ is surjective. Suppose U ∈ Γd(U0). Let {v1, . . . , vd} be a basis of U and write

vj =
d∑

i=1

bijui +
d∑

i=1

cijud+i + γju2d+1 (j = 1, 2, . . . , d).

If the d× d matrix C = (cij) is singular, then there exists a nonzero vector (α1, . . . , αd)
∈ GF(q)d such that

∑d
j=0 αjcij = 0 for all i = 1, . . . , d. But this implies 0 6= ∑d

j=0 αjvj ∈
f−1(0) ∩ (U0 ⊥ 〈u2d+1〉) = U0, which contradicts to U ∩ U0 = 0. Thus C is nonsingular.
Put A = (aij) = (bij)C

−1, βk =
∑d

j=1(C
−1)jkγj (k = 1, . . . , d) and wk =

∑d
i=1 aikui +

ud+k + βku2d+1 (k = 1, . . . , d). Then

wk =
d∑

i=1

d∑
j=1

bij(C
−1)jkui +

d∑
i=1

δikud+i +
d∑

j=1

(C−1)jkγju2d+1

=
d∑

j=1

(C−1)jk

d∑
i=1

bijui +
d∑

i=1

d∑
j=1

cij(C
−1)jkud+i +

d∑
j=1

(C−1)jkγju2d+1

=
d∑

j=1

(C−1)jkvj,

so that {w1, . . . , wd} is a basis of U . Since U is singular, (5.5) implies that A is symmetric.
Then the equality (5.4) implies ϕ(A) = U , proving the surjectivity. Finally we want to
prove that ϕ preserves adjacency. Let A,B ∈ Y and denote by a,b the row vectors
whose entries are the square roots of the diagonal entries of A,B, respectively. Then

dimϕ(A) ∩ ϕ(B) = 2d− dim(ϕ(A) + ϕ(B))

= 2d− rank

 A B
I I
a b



= 2d− rank

 A+B B
a + b b

0 I


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= d− rank

(
A+B
a + b

)
= d− rank(A+B)

by Lemma 5.5. This establishes the second part of the assertion, which also shows that
ϕ is an isomorphism of the graphs Sym(d, q) and Γd(U0).

If one follows the proofs of Theorem 5.2, Theorem 5.3 and Theorem 5.6, it is not hard
to construct a correspondence from Alt(d+1, q) to Sym(d, q) when q is a power of 2. We
shall do this explicitly.

Let Ṽ be a vector space of dimension 2d + 2 over GF(q), where q is a power of 2.
Suppose that f is a quadratic form defined by

f(
2d+2∑
i=1

ξiui) =
d∑

i=1

ξiξd+i + ξ2d+1ξ2d+2,

where {u1, u2, . . . , u2d+2} is a basis of Ṽ . Let Ũ0 = 〈u1, . . . , ud, u2d+1〉. Then an iso-
morphism from Alt(d + 1, q) to the (d + 1)-st subconstituent of Dd+1(q) is given by
ϕ : A = (aij) 7→ 〈vj|j = 1, 2, . . . , d + 1〉, where vj =

∑d
i=1 aijui + ad+1,ju2d+1 + ud+j

(j = 1, 2, . . . , d), vd+1 =
∑d

i=1 ai,d+1ui + u2d+2. Put v = u2d+1 + u2d+2, V = 〈v〉⊥. Then
f |V is a non-degenerate quadratic form of Witt index d, and ϕ(A) ∩ V is a maximal
singular subspace of V which intersects trivially with the maximal singular subspace
〈u1, u2, . . . , ud〉. Since Bf (vj, v) = ad+1,j for j = 1, 2, . . . , d and Bf (vd+1, v) = 1, we see

ϕ(A) ∩ V = 〈vj + ad+1,jvd+1|j = 1, 2, . . . , d〉.

and

vj + ad+1,jvd+1 =
d∑

i=1

(aij + ad+1,iad+1,j)ui + ud+j + ad+1,jv.

Under the correspondence given in Theorem 5.6, the subspace ϕ(A) ∩ V is mapped to
the symmetric matrix A0 + taa, where A0 = (aij)0≤i,j≤d,

ta = (ad+1,1, ad+1,2, . . . , ad+1,d).
The above argument gives the following theorem.

Theorem 5.7 Let q be a power of 2. The graph Alt(d + 1, q) is isomorphic to the
“merged” symmetric bilinear forms graph, which has the same vertex set of Sym(d, q),
and two vertices A,B are adjacent whenever rank(A+B) = 1 or 2, under the mapping

ψ :

(
A0

ta
a 0

)
7→ A0 + taa, (5.6)

where A0 is a d× d alternating matrix.

This theorem can be proved without passing to dual polar graphs. See Appendix C.
A proof for the case q = 2 can be found in [3].

Again we should note that the “merged” symmetric bilinear forms graph is not the
distance 1-or-2 graph of the symmetric bilinear forms graph. This follows immediately
from Proposition 5.4 and Theorem 5.6. Let q be a power of 2, A,B ∈ Sym(d, q) and
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suppose rank(A + B) = 2. Let us derive a condition when A and B are distance 2
apart in Sym(d, q). With the notation of Proposition 5.4 and Theorem 5.6, the distance
between A and B is greater than 2 if and only if dimU0 ∩ (ϕ(A) + ϕ(B)) = 2. Since
dim(ϕ(A) + ϕ(B)) = d + 2, this is equivalent to dim(U0 + ϕ(A) + ϕ(B)) = 2d. On the
other hand,

dim(U0 + ϕ(A) + ϕ(B)) = rank

 I A B
0 I I
0 a b


= d+ rank

(
I A+B
0 a + b

)
= 2d+ rank(a + b),

where a,b are the row vectors whose entries are the square roots of the diagonal entries
of A,B, respectively. Thus, the distance between A and B is greater than 2 if and only
if A+B is alternating.

Of course, one can argue without using the correspondence given in Theorem 5.6.
Here we present a more straightforward way.

Lemma 5.8 Let q be a power of 2 and A = (aij) be a symmetric matrix with entries in
GF(q). Let a be the row vector whose entries are the square roots of the diagonal entries
of A: a = (

√
a11,

√
a22, . . . ,

√
add). If A has rank 1, then A = taa.

Proof. If A has rank 1, then Proposition 1.5 implies that A is not alternating. In
particular, not all diagonal entries are 0. Suppose akk 6= 0. Since A has rank 1, every
row vector of A is a scalar multiple of the k-th row. This implies aij = akjaik/akk for any
i, j. Since A is symmetric, putting i = j gives aik =

√
aiiakk. Thus

aij =
aikajk

akk

=
√
aiiajj

for all i, j. This proves the desired formula A = taa.

If A and B are distinct symmetric matrices of rank 1, then Lemma 5.8 implies that
A = taa and B = tbb for some vectors a,b with a 6= b. Then the diagonals of A and
B are distinct, hence A + B is not alternating. Conversely, if A is a non-alternating
symmetric matrix of rank 2, then one can easily show that there exists a nonsingular
matrix B such that

tBAB =

 1 0
0 1

 ,
thus A is a sum of two symmetric matrices of rank 1. To summarize:

Theorem 5.9 Let q be a power of 2, A,B vertices of Sym(d, q). Then the distance
between A and B is 2 if and only if rank(A+B) = 2 and A+B is not alternating.
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Appendix

A Witt’s extension theorem

Many of the results in sections 2,3 can be derived easily from the Witt’s extension the-
orem. However, I have opted to exclude the Witt’s extension theorem from the main
text since its proof is rather complicated. In this section we let f be a non-degenerate
quadratic form on a vector space V over an arbitrary field.

Lemma A.1 If V is a hyperbolic plane, then the group of isometries of (V, f) acts tran-
sitively on the set of nonzero singular vectors.

Proof. This is immediate from Proposition 1.8.

Lemma A.2 Let U be a degenerate hyperplane of V . Assume that Bf is non-degenerate.
Then any isometry σ : U −→ V is extendable to V .

Proof. Let u ∈ Rad (f |U). Since Bf is non-degenerate, we have 〈u〉 = U , and hence
Rad (Bf |U) = Rad (f |U) = 〈u〉. Write U = U0 ⊥ 〈u〉. Then Bf |U0 is non-degenerate, so
V = U0 ⊥ U⊥

0 . Also V = σ(U0) ⊥ σ(U0)
⊥. Note that we have u ∈ U⊥

0 , σ(u) ∈ σ(U0)
⊥,

and f(u) = f(σ(u)) = 0, so that U⊥
0 and σ(U0)

⊥ are hyperbolic planes. By Lemma A.1,
there exists an isometry τ : U⊥

0 −→ σ(U0)
⊥ such that τ(u) = σ(u). Now σ|U0 ⊥ τ is an

extension of σ to V .

Lemma A.3 If G is a group and A,B are subgroups of G such that G = A ∪ B, then
either G = A or G = B.

Proof. Suppose contrary. Then there exist elements a ∈ A, b ∈ B such that a 6∈ B,
b 6∈ A. Then the product ab 6∈ A ∪B, which is a contradiction.

Theorem A.4 (Witt’s Extension Theorem) Let f be a quadratic form on a vector
space V such that Bf is non-degenerate. Suppose that U is a subspace of V and σ : U → V
is an isometry. Then there exists an extension σ∗ : V → V of σ.

Proof. We prove by induction on dimU . If dimU = 0 then the assertion is trivially true
by taking σ∗ = 1V . So let us assume 1 ≤ dimU ≤ n − 1, where n = dimV . If σ = 1U ,
then again we can take σ∗ = 1V , so we assume σ 6= 1U . Choose an arbitrary subspace U0

of U with dimU0 = dimU − 1. By induction there exists an isometry τ : V → V such
that τ |U0 = σ|U0 . If there exists an extension σ̃ of τ−1 ◦ σ, then τ ◦ σ̃ is an extension of
σ. Thus, without loss of generality we may assume σ|U0 = 1U0 .

Write U = U0⊕〈a〉, W = U0⊕〈b〉, where b = σ(a). If there exists a vector z 6∈ U ∪W
such that Bf (z, a) = Bf (z, b), then we may replace U,W,U0 by U⊕〈z〉, W⊕〈z〉, U0⊕〈z〉,
respectively, and extend σ to U ⊕〈z〉 by defining σ(z) = z. Continuing this process until
it is no longer possible, or we have U = V in which case the proof is complete. Suppose

33



U 6= V . Then we must have 〈a − b〉⊥ ⊂ U ∪ W . By Lemma A.3, we have either
〈a − b〉⊥ ⊂ U or 〈a − b〉⊥ ⊂ W . Since U and W are proper subspaces and 〈a − b〉⊥ is a
hyperplane, we see 〈a− b〉⊥ = U or W . In particular, a ∈ 〈a− b〉⊥ or b ∈ 〈a− b〉⊥. On
the other hand, f(a) = f(b) implies

Bf (a, a) = f(a) + f(b) = Bf (b, b),

and hence
Bf (a, a− b) = f(a− b) = Bf (b− a, b).

Therefore f(a− b) = 0. This implies a− b ∈ Rad (f |U), that is, U is degenerate. Now σ
is extendable to V by Lemma A.2.

The non-degeneracy of Bf in the hypothesis of Theorem A.4 is necessary, as the follow-
ing example indicates. Under an appropriate condition, the conclusion of Theorem A.4
holds even if Bf is degenerate. See Theorem A.6 and [4], 7.4 Theorem.

Example. Consider the quadratic form f = x1x2 + x2
3 on GF(2)3. The mapping σ :

〈e3〉 → V , e3 7→ e1 + e2 is an isometry but it has no extension to V . Indeed, 〈e3〉 is the
radical of Bf which must be left invariant under any isometry of V .

Lemma A.5 If U1, U2 are singular subspaces of V , then (U1 + U2) ∩ RadBf = 0.

Proof. Let v ∈ (U1 + U2) ∩ RadBf , v = u1 + u2, u1 ∈ U1, u2 ∈ U2. Then f(v) =
f(u1 + u2) = Bf (u1, u2) = Bf (u1, v) = 0. Since f is non-degenerate, we see v = 0, that
is, (U1 + U2) ∩ RadBf = 0.

By the following theorem, the dimension of any maximal singular subspace is equal
to the Witt index.

Theorem A.6 Let f be a non-degenerate quadratic form on a vector space V over K.
If U1, U2 are maximal singular subspaces of V , then there exists an isometry σ of V such
that σ(U1) = U2. In particular, dimU1 = dimU2.

Proof. Without loss of generality we may assume dimU1 ≤ dimU2. Then any injection
σ : U1 −→ U2 is an isometry. Suppose first that Bf is non-degenerate. By Witt’s
extension theorem, there exists an extension of σ to V , which we also denote by σ. Then
σ−1(U2) is a singular subspace containing U1, hence by the maximality of U1, we have
U1 = σ−1(U2), in other words, σ(U1) = U2.

Next suppose that Bf is degenerate. By Lemma A.5, we have (U1 +U2)∩RadBf = 0.
This implies the existence of a hyperplane W containing U1 +U2 with V = W ⊕RadBf .
As Bf |W is non-degenerate, we can apply the first case to obtain an extension of σ to W .
Extending σ further to V by defining σ|Rad Bf

= 1Rad Bf
, we obtain the desired isometry

of V .

Using the Witt’s extension theorem, we can give an alternative proof of Theorem 3.2.

Proof of Theorem 3.2. By Lemma A.5, we have (U1+U2)∩RadBf = (U ′
1+U

′
2)∩RadBf =

0. This implies that there exist hyperplanes W,W ′ complementary to RadBf , containing
U1 + U2, U

′
1 + U ′

2, respectively. Now f |W and f |W ′ are non-degenerate, and have Witt
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index d, as W and W ′ contain singular d-dimensional subspaces. By Corollary 2.12
there exists an isometry τ : W ′ −→ W . On the other hand, there exists an isometry
σ0 : U1 + U2 −→ U ′

1 + U ′
2 satisfying σ0(U1) = U ′

1 and σ0(U2) = U ′
2 by Lemma 3.1. The

composition τ ◦ σ0 is an isometry U1 + U2 −→ W which can be extended to an isometry
ρ : W −→ W by Witt’s theorem. Now τ−1 ◦ ρ : W −→ W ′ is an isometry extending
σ0. Finally the isometry σ defined by σ|W = τ−1 ◦ ρ, σ|Rad Bf

= 1Rad Bf
has the desired

property.

35



B Transitivity without Witt’s theorem

In this section we shall show that the orthogonal group acts transitively on the set of
maximal singular subspaces, without using the Witt’s extension theorem. The method
used here works for an arbitrary base field. I would like to thank William Kantor for
informing me of this approach.

Throughout this section, we assume that f is a non-degenerate quadratic form on a
vector space V .

Lemma B.1 The group of isometries of (V, f) acts transitively on the set of nonzero
singular vectors.

Proof. Let u, v be nonzero singular vectors. We want to show that there exists an
isometry σ such that σ(u) = v.

Case 1. Bf (u, v) 6= 0. In this case P = 〈u, v〉 is a hyperbolic plane and V = P ⊥ P⊥.
By Lemma A.1 there exists an isometry σ of P such that σ(u) = v. Extending σ to V
by defining σ|P⊥ = 1P⊥ , we obtain the desired isometry.

Case 2. Bf (u, v) = 0. We claim that there exists a singular vector w such that
Bf (u,w) 6= 0, Bf (v, w) 6= 0. Then the proof reduces to Case 1. As for the claim, pick a
vector z 6∈ 〈u〉⊥ ∪ 〈v〉⊥. This is possible by Lemma A.3. Then by Proposition 1.7 there
exists a singular vector w ∈ 〈u, z〉 such that Bf (u,w) = 1. We also have Bf (v, w) 6= 0,
since 〈u,w〉 = 〈u, z〉 6⊂ 〈v〉⊥ and u ∈ 〈v〉⊥.

Theorem B.2 The group of isometries of (V, f) acts transitively on the set of singular
k-dimensional subspaces for any given k.

Proof. We prove by induction on k. The case k = 1 has been established in Lemma B.1.
Suppose 1 < k ≤ d, where d is the Witt index. By Proposition 2.4 we may write

V = 〈v1, v2〉 ⊥ · · · ⊥ 〈v2d−1, v2d〉 ⊥ W,

where {v2i−1, v2i} (i = 1, . . . , d) are hyperbolic pairs and W is a subspace containing
no nonzero singular vectors. Let U be a singular subspace of dimension k. We want
to construct an isometry σ of V such that σ(U) = 〈v1, v3, . . . , v2k−1〉. Pick a nonzero
vector u ∈ U . By Lemma B.1, there exists an isometry τ of V such that τ(u) =
v1. If we write P = 〈v1, v2〉, then P⊥ ∩ τ(U) = 〈v2〉⊥ ∩ τ(U) is a singular (k − 1)-
dimensional subspace of P⊥. By induction, there exists an isometry ρ of P⊥ such that
ρ(P⊥∩τ(U)) = 〈v3, . . . , v2k−1〉. Since τ(U) = 〈v1〉 ⊥ P⊥∩τ(U), we find (1P ⊥ ρ)◦τ(U) =
〈v1, v3, . . . , v2k−1〉, that is, σ = (1P ⊥ ρ) ◦ τ is an isometry with the desired property.
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C Another proof of Theorem 5.7

Theorem 5.7 can be proved directly. It is easy to see that the mapping ψ defined in (5.6)
is bijective. To show that ψ preserves adjacency, let

A =

(
A0

ta
a 0

)
, B =

(
B0

tb
b 0

)

be vertices of Alt(d+ 1, q), where A0, B0 are d× d alternating matrices. Then we have

rank(A+B)

= rank

(
A0 +B0

t(a + b)
a + b 0

)

= rank

(
A0 +B0 + t(a + b)(a + b) t(a + b)

a + b 0

)

= rank

(
ψ(A) + ψ(B) + t(a + b)b + tb(a + b) t(a + b)

a + b 0

)

= rank

(
ψ(A) + ψ(B) t(a + b)

a + b 0

)
.

Since a + b is the vector consisting of the square roots of the diagonal entries of ψ(A) +
ψ(B), we have, by Lemma 5.5,

rank(A+B) = rank(ψ(A) + ψ(B)) or rank(ψ(A) + ψ(B)) + 1.

In particular, rank(A + B) = 2 if and only if rank(ψ(A) + ψ(B)) = 1 or 2. This shows
that ψ is an isomorphism from Alt(d + 1, q) to the “merged” symmetric bilinear forms
graph.
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D Notes

The example on page 5 may be a good exercise for students. During my lecture, I have left
as exercises the proofs of Proposition 1.1, Proposition 1.5, Proposition 2.7, Lemma 3.3,
Proposition 4.3, and the equalities (4.1), (4.2).

All, or part of materials in the first two sections can be found in many books, for
example, [4], [6]. The books [1], [5] are excellent for beginning students, but they do not
deal with quadratic forms in characteristic 2. All results in sections 3,4, and a part of
section 5 can be found in [2]. It is more natural to identify the graph Sym(d, q) with the
d-th subconstituent of the dual polar graph of type Cd(q), than we did in Theorem 5.6.
The detailed discussion in the latter part of section 5 of dual polar graphs and symmetric
bilinear forms graphs has not been available in previously published work.
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