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Preface

This lecture note is based on the lectures given at Kyushu University in 1994 and at
Ateneo de Manila University in 1995. In these lectures I presented the theory of quadratic
forms over finite fields. The emphasis is placed on geometric and combinatorial objects,
rather than the orthogonal group itself. Our goal is to introduce dual polar spaces as
distance-transitive graphs in a self contained way. Prerequisites are linear algebra, and
finite fields. In the later part of the lecture, familiarity with counting the number of
subspaces of a vector space over a finite field is helpful.

This lecture note is not intended as a full account of dual polar spaces. It merely
treats those of type D, (q), B,(q) and D,(¢q). One can treat other types, namely, those
coming from symplectic groups and unitary groups, in a uniform manner, but I decided
to restrict our attention to the above three types in order to save time. Once the reader
finishes this note, he/she should be able to learn the other cases with ease.

A motivation of writing this note, as well as giving the lecture, is to make the reader
get acquainted with nontrivial examples of distance-transitive graphs. I consider Ham-
ming graphs and Johnson graphs trivial, as one can establish their distance-transitivity
without any special knowledge. The book by Brouwer—-Cohen—Neumaier [2] seems too
advanced for the beginning students, while other books on the classical groups and their
geometries are oriented toward group theory. I hope this lecture note serves as a starting
point for the reader to further study of distance-transitive and distance-regular graphs.

The presentation of this lecture note is strictly toward an introduction of dual polar
spaces of type D,,(q), B,(q) and ?D,,(¢q). T have tried to throw away whatever unnecessary,
to make it short. The Witt’s extension theorem is included in the appendix for the sake
of completeness. This fundamental theorem will not be used in the main text.

This lecture note was completed while the author was visiting Ateneo de Manila
University, under a grant from JSPS-DOST. I would like to thank these organizations for
their financial support. I would like to thank William Kantor for a helpful discussion on
Witt’s theorem. I also would like to thank faculty members of Mathematics Department
of Ateneo de Manila University for their hospitality.
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1 Symmetric bilinear forms and quadratic forms

All vector spaces are assumed to be finite dimensional.

Definition. A symmetric bilinear form on a vector space V over a field K is a mapping
B:V xV — K satistying

B(u,v) = B(v,u),
B(uy +ug,v) = B(ug,v)+ B(ug,v),
B(au,v) = aB(u,v)

for any u, uy,us,v € V and o € K. Then clearly

B(u,vy +v3) = B(u,v1) + B(u,vs),
B(u,av) = aB(u,v)

hold for any u, v, v9,v € V and a € K.

Definition. If U is a subset of a vector space V and B is a symmetric bilinear form on
V', then we define the orthogonal complement of U by

Ut = {v € V|B(u,v) =0 for any u € U}.

The subspace V* is also denoted by Rad B which is called the radical of the symmetric
bilinear form B. The symmetric bilinear form B is said to be non-degenerate if Rad B =
0. If U is a subspace, then By : U x U — K is a symmetric bilinear form on U, so by
the definition Rad (B|y) = U N U+, The subspace U is said to be non-degenerate if the
restriction of B to U is non-degenerate, that is, Rad (B|y) = 0. If U is a direct sum of
two subspaces Uy, Uy and if B(ug,us) = 0 for any u; € Uy and us € Us, then we write

U =U; L Us,. In this case Rad (B|y) = Rad (B|y,) L Rad (B|y,) holds.

Proposition 1.1 Let B be a symmetric bilinear form on a vector space V', U a subspace
of V.. Then we have the following.

(i) dimU + dim U+ = dim V + dim U N Rad B.
(i) U+ =U + Rad B.
(iii) If U is non-degenerate, then V. =U 1 U*L.
Proof. (i) Suppose dimV = n and fix a basis {vi,...,v,} of V in such a way that

(v1,v9,...,v;) L UNRad B = U holds. Then U~ is isomorphic to the space of solutions
of the system of linear equations

n

> B(vi,v))z; =0 (j=1,....k).

=1

Since (v1,vg,...,v) N Rad B = 0, the n X k coefficient matrix (B(v;,v;)) of the above
equations has rank k. Thus dim U+ = n — k, proving (i).



(ii) Clearly, U L Rad B C U** holds. By (i) we have

dimU* = dimV —dimU* +dimU* NRad B
= dimU —dimU NnRad B + dim Rad B
= dim(U + Rad B).
Therefore U+ = U + Rad B.

(iii) Since 0 = RadU = U N U+ > U NRad B, we have dimU + dim U+ = dim V' by
(i) and hence V =U L U*. m

Definition. A quadratic form f on a vector space V over a field K is a mapping f :
V x V — K satisfying

flaw) = a?f(v),
flutv) = f(u)+ f(v) + Bg(u,v)

for any u,v € V and a € K, where By is a symmetric bilinear form.

Proposition 1.2 If V is a vector space of dimension n, then there is a one-to-one cor-
respondence between quadratic forms on V and homogeneous polynomials of degree 2 in
n variables.

Proof. Fix a basis vy,...,v, of V. If
1<j

is a homogeneous polynomial of degree 2 in xy,...,x,, then define a mapping f by

f(w) =p(A1,..., \n), where v = 327, A\jv;. Clearly
f(OéU) = f(z Oé)‘zv’L) - p(a)\la s 7Oé>\n> - Oézp(>\17 R )‘n)
i=1

If we define By by
By(u,v) =Y (s + i)

1<
where u = Y71 pv5, v = Y1 A\jvg, then By is a symmetric bilinear form on V' and we
have

flutv) = 3 a(p 4+ Ni)(p + A))

i<j
i<j i<j i<j

= [f(u) + f(v) + By(u, v)

Thus f is a quadratic form. Notice that the coefficients of the polynomial p can be
recovered by the formula

Qg = f(vi)v
aij = By(v,v;) (1<j).
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Conversely, given a quadratic form f, define a homogeneous polynomial p by (1.1), (1.2)
and (1.3). Then we have

flv) = f(zn: Aiv;)

= f)\vz +ZBf)‘U17)‘UJ)
1

= 1<j

3

= Z)\ Ui +Z)\i)\jBf<vi;Uj)
=1 1<J

— Z Oézz/\2 Z aij)\i/\j

1<j

= Z Qi Aidj

i<j
= p(/\l, ey )\n)

This establishes a one-to-one correspondence. [ ]

Definition. If f is a quadratic form on a vector space V', a vector v € V' is called singular
if f(v) =0. A subspace U of V is called singular if it consists of singular vectors.

Ezxample. Let p = x129 + 2314, and consider the corresponding quadratic form f deter-
mined by p with respect to the standard basis of

V = GF(2)* = {(a1, @, a3, a4)|o; = 0 or 1}.
Nonzero singular vectors are

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,1,1)
(1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1),

while singular 2-dimensional subspaces are

U, = {(0,0,0,0), (1,0,0,0), (0,0, 1,0), (1,0,1,0)},
U, = {(0,0,0,0), (0,1,0,0), (0,0,0,1), (0,1,0,1)},
Us = {(0,0,0,0),(1,0,0,1),(0,1,1,0), (1,1,1,1)},
U, = {(0,0,0,0), (1,0,0,0), (0,0,0,1), (1,0,0, 1)},
Us = {(0,0,0,0),(0,1,0,0), (0,0,1,0), (0, 1,1,0)},
Us = {(0,0,0,0),(1,0,1,0),(0,1,0,1), (1,1,1,1)}.

Let us construct a graph by taking vertices as singular 2-dimensional subspaces, joining
two vertices when they intersect nontrivially. The graph is isomorphic to the complete
bipartite graph K33 depicted below.

Uy Us Us

Uy Us Us



Definition. The radical of a quadratic form f on a vector space V over a field K is defined
to be
Rad f = f7'(0) N Rad By.

The quadratic form f is said to be non-degenerate if Rad f = 0. If U is a subspace
of V, then f|y : U — K is a quadratic form on U, so by the definition Rad (f|y) =
f~H0)NUNU*. The subspace U is said to be non-degenerate if the restriction of f to
U is non-degenerate, that is, Rad (f|y) = 0.

We denote by chK the characteristic of a field K. The whole theory of quadratic
forms looks quite different if chK is 2, but we shall try to take as unified an approach as
possible. First notice that Rad f = Rad By if chK # 2. Indeed,

2/ (v) = By(v,v) (L4)

holds for any v € V, thus if chK # 2, then f(v) = 0 for any v € Rad By. Notice also
that Rad f is a subspace even if chK = 2.

Proposition 1.3 Let f be a non-degenerate quadratic form on a vector space V., U a
subspace of V. If By|y is non-degenerate, then we have V.= U L Ut and U* is non-
degenerate.

Proof. The first part follows from Proposition 1.1 (iii). Since
Rad By = Rad (By|y) L Rad (By|yr) = Rad (Bf|yz),
we have
Rad (f|y1) = f71(0) NRad (By|y1) = f'(0)NRad By = Rad f = 0.

Thus U~ is non-degenerate. m

Lemma 1.4 Let f be a non-degenerate quadratic form on V. If U is a singular subspace

of V, then dim U+ = dimV — dim U and Rad (f|y+) =U.

Proof. Since f is non-degenerate, we have U N Rad B = 0, so that by Proposition 1.1,
dimU+ = dimV — dimU and U+ = U L Rad B hold. The latter equality implies
ULtNU* = U 1L Rad B, and hence Rad (f|y.) = f~1(0) N (U L Rad B) = U. n

If chK = 2, then By(v,v) = 0, that is, the symmetric bilinear form By is also
alternating. Recall that a square matrix A = (a;;) is alternating if a;; = 0 and a;;+a;; = 0
for all 1, 5.

Proposition 1.5 If an alternating matriz is nonsingular, then its size must be even.

Proof. Let A be an alternating matrix of size n. This is trivial when chK # 2, as
|A| = |AT| = | — A] = (—1)"|A|. If chK = 2, then consider the definition of determinant.
If n is odd, there is no fixed-point-free permutation of order 2. Thus all terms are canceled
out in pairs, so that the determinant is zero. Suppose rankA = r. Let B be a nonsingular
matrix whose first n — r columns form the right null space of A. Then the matrix ‘BAB
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has rank r and contains a r X r alternating submatrix with all other part 0. By the first
part we see r is even. ]

From now on we assume that K is a finite field. If chK = 2, then the multiplicative
group K* is a cyclic group of odd order, and consequently a square root of an element
is uniquely determined. Moreover, /o + 3 = y/a + /3 holds, as taking the square root
is the inverse of the Frobenius automorphism a — a?. We need this fact to prove the
following proposition.

Proposition 1.6 If f is a non-degenerate quadratic form on a vector space V' over K,
then either By is non-degenerate, or chK =2, dimV is odd, and dim Rad By = 1.

Proof. As shown before, Rad f = Rad By if ch KK # 2. Thus, if Rad By # 0, then chK = 2.

Then the mapping from Rad By to K defined by v +— 4/ f(v) is an isomorphism of K-
vector spaces. It remains to show that n = dim V' is odd. Fix a basis {vy,...,v,} of
V' such that v, is a basis of Rad By. Then the matrix A = (Bf(v;,v;))1<ij<n—1 1S a
nonsingular alternating matrix of size n — 1. By Proposition 1.5 we conclude that n is
odd. |

Definition. Let f be a quadratic form on a vector space V over K. A hyperbolic pair
is a pair of vectors {u,v} of V satisfying f(u) = 0, f(v) = 0 and Bf(u,v) = 1. Clearly,
a hyperbolic pair is a set of linearly independent vectors. The 2-dimensional subspace
(u,v) spanned by the hyperbolic pair {u, v} is called a hyperbolic plane.

If {v1,v2} is a hyperbolic pair, then the quadratic form f|, .,) corresponds to the
monomial x17, in the sense of Proposition 1.2. Indeed, f(Ajv; + Xowo) = A2 f(vy) +
A3 f(va)+ A1 A2 By (v1,v2) = A Aa. A hyperbolic plane P is clearly non-degenerate. Indeed,
By|p is non-degenerate.

Proposition 1.7 If f is a quadratic form on a vector space V, u is a nonzero singular
vector, and By(u,w) # 0, then there exists a vector v € (u,w) such that {u,v} is a
hyperbolic pair.

Proof. Let wy = By(u,w) 'w. Then Bj(u,w;) = 1 and v = —f(w;)u + w; has the
desired property. m

Proposition 1.8 If f is a non-degenerate quadratic form on a vector space V and u is a
nonzero singular vector, then there exists a vector v such that {u,v} is a hyperbolic pair.

Proof. Since f(u) =0, u € Rad By. Thus there exist a vector w such that By(u, w) # 0.
The result follows from Proposition 1.7. [ |

Definition. Let f, f’ be quadratic forms on vector spaces V, V' over K, respectively. An
isometry o : (V, f) — (V’, f) is an injective linear mapping from V' to V' satisfying
f(v) = f'(o(v)) for all v € V. The two quadratic forms f, f’ are called equivalent if there
exists an isometry from V onto V.

We shall use the following lemma to check a given linear mapping is an isometry.



Lemma 1.9 Let f, f' be quadratic forms on vector spaces V, V' over K, respectively, and
let {v1,...,v,} be a basis of V. An injective linear mapping o : V. — V' is an isometry
if and only if

fvi) = fllo(v)) foralli=1,...,n,

B¢(vi,vj) = Bp(o(v;),o(v;)) foralli,j=1,... n.

Proof. Under the stated conditions, we have

FONv) = DN F(v) + > AABy (v, v))
=1

i=1 i<j

= SR o) + AN B o), o)

= 'O Nio(wi))

i=1

= f’(U(i Aivi)),

so that ¢ is an isometry. The converse is obvious. [ ]



2 Classification of quadratic forms

In this section we classify non-degenerate quadratic forms. As before, we let V' be a
finite-dimensional vector space over a finite field K.

Definition. Let f be a quadratic form on V. The Witt index of f is defined to be the
maximum of the dimensions of singular subspaces of V.

Proposition 2.1 Let f be a quadratic form of Witt index d on V. Then any maximal
singular subspace of V' has dimension d.

Proof. Let U be a singular subspace of dimension d. We want to show that any singular
subspace W of dimension less than d cannot be maximal. Since W+ + U c (W NU)*,
we have, by Proposition 1.1 (i)

dim W+ NU dim W+ + dim U — dim(W+ + U)

dimV +dim W N Rad By — dim W

+dimU — dim(W N U)*

dim V' + dim W N U N Rad By — dim(W N U)*
+dimU — dim W

= dmWnNU+dimU — dim W

> dimWNU.

v

v

This implies that there exists a nonzero vector v € W+ N U with u € W. The subspace
W L (u) is a singular subspace containing W, so that W is not maximal. u

The assertion of Proposition 2.1 is also a consequence of the Witt’s extension theorem
(see Theorem A.6). Indeed, the Witt’s extension theorem implies that the group of
isometries acts transitively on the set of maximal singular subspaces. Yet another proof
of this fact will be given in Appendix B.

Lemma 2.2 Let K be a finite field of odd characteristic. Then for any o € K there
exist elements \, i € K such that o = \? + u? holds.

Proof. If a is a square, then we may take u = 0, so let us assume that « is a non-square.
Thus it suffices to show that every non-square can be expressed as the sum of two squares.
To show this, it is then suffices to prove that some non-square can be expressed as the
sum of two squares. Suppose contrary. Then the sum of two squares is always a square,
so that the set of all squares becomes an additive subgroup of K of order (|K|+ 1)/2,
which is not a divisor of | K|, contradiction. n

Lemma 2.3 Let f be a non-degenerate quadratic form on V. If dimV > 3, then the
Witt index of f is greater than 0.

Proof. Case 1. chK # 2. Let v; € V' be a nonzero vector. We may assume f(v1) # 0.
Then By|,,) is non-degenerate, so that by Proposition 1.1 (iii), we have V' = (v1) L (v1)*.

Let vy € (v1)* be a nonzero vector. Again we may assume f(vy) # 0. If we put P =
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(v1,v9), then we can see easily that By|p is non-degenerate. Again by Proposition 1.1 (iii),
we have V = P L P+ = (v;) L (v;) L Pt. Let v3 € P+ be a nonzero vector. We may
assume f(v3) # 0. Then

{f(v1), fv2), fvs)} C K™ = (K*)* Ue(K™)?,

where € is a non-square, hence two of the three elements belong to the same part. Without
loss of generality we may assume f(v;) and f(vs) belong to the same part, that is,
fv)f(va)™! = a? € (K*)%. Replacing vy by avs, we may assume f(v;) = f(vz). By
Lemma 2.2, there exist elements «, 3 € K such that —f(v3) f(v;)™! = a® + 32. Now the
vector v = awy + [fve + v has the desired property f(v) = 0.

Case 2. chK = 2. Let W be a subspace of V of dimension 3. If f| is degenerate, then
f71(0) # 0, so the assertion holds. If f|y is non-degenerate, then let (v) = Rad Byy,,.

Pick an element u € W, u € Rad By),,,. Then f(\/f(v)u + \/f(u)v) =0 as desired. m

Proposition 2.4 Let f be a non-degenerate quadratic form on V. If U is a maximal
singular subspace of V- and dim U = d, then there exist hyperbolic pairs {vy;_1,v9;} (i =
1,...,d) such that U = (vy,vs3, ..., 094 1) and

V = (v1,v9) L - L (vag_1,v2q) L W,

where W is a subspace containing no nonzero singular vectors. In particular, dimV =
2d+e,e=0,1 or?2.

Proof. We prove by induction on d. The case d = 0 is trivial except the assertion
on dim W, which follows from Lemma 2.3. Suppose d > 1. Pick a nonzero vector
vy € U and take a complementary subspace U’ in U: U = (v;) L U’. The subspace
U’ is singular, so by Lemma 1.4, we have Rad (f|;,+) = U’. Since f(v;) = 0 and
v € U', we see v; & Rad (By|1). This implies that there exists a vector v € U'* such
that By(vi,v) # 0. By Proposition 1.7 there exists a vector vy € (vy,v) C U'" such
that {vy, v} is a hyperbolic pair. By Proposition 1.3, we have V = P L P+, where
P = (v, v3), and P is non-degenerate. Since vy, vy € U, we see U' C P+, Also, U’ is
a maximal singular subspace of P+, since otherwise U would not be a maximal singular
subspace of V. By induction we find hyperbolic pairs {vy;_1,v9;} (i = 2,...,d) such that

Pt = (vg,vs) L+ L (vgq_1,v94) LW,

where W is a subspace of dimension 0,1 or 2, containing no nonzero singular vectors.
This gives the desired orthogonal decomposition of V. [ ]

Theorem 2.5 Let f be a non-degenerate quadratic form on V with dimV = 2m + 1.
Then f has Witt index m and there exists a basis {vy,...,vami1} of V such that

2m+1 m
FOO2 &ui) = Goiboi + & (2.1)
i=1 i=1
or € is a non-square in K with chK # 2 and
2m+1 m
f( Z §ivg) = 2522'7152@' + s£§m+1 (2.2)
i=1 i=1
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Proof. Clearly f has Witt index m by the second part of Proposition 2.4. Also by
Proposition 2.4, there exists a basis {vy, ..., Vo, w} such that

V= <U1,U2> L L <U2m—1>U2m> 1 (w},

where {vo;_1,v9;} (i = 1,...,m) are hyperbolic pairs, f(w) # 0. If f(w) is a square in K,
say f(w) = o? for some a € K, then defining vs,,11 = o~ w, we obtain the desired form
of f. If f(w) is a non-square in K (this occurs only when chK # 2), then f(w) = ea?
for some o € K. Again defining vy,,.1 = o~ tw, we obtain the desired form of f. [ ]

Corollary 2.6 Let f, f' be non-degenerate quadratic forms on vector spaces V, V', re-
spectively, over K with dimV = dim V' = 2m + 1.

(i) If chK = 2, then f is equivalent to f'.
(ii) If chK is odd, let € be a non-square. Then f is equivalent to either f' oref’.
Proof. (i) This follows immediately from Theorem 2.5.

(ii) Let
2m+1 m
f( Z §vi) = 2521‘71521' + fgmﬂ,
i=1 i=1
2m+1 m
f( Z &vy) = Zfzi—1€2i + Efgm“,
i=1 i=1
for some bases {v1,...,vomq1}, {v1,..., 05,1} of V,V’, respectively. We want to con-
struct an isometry from (V) f) to (V’,ef’). Define a new basis {v{,...,v5,, } of V'
by
o, o= e b, i=1,....m+1,
Uy, = U i=1,...,m.
Then we have
2m—+1 m+1 m

ef'(DY &) = ef' (D e aiavh + D Eavy)
=1 =1 =1
= S(Em: e 6160 + (e amen)?)
=1

= Z §2i—162i + §§m+1‘
i=1

Thus, the correspondence v; — v/ is an isometry from (V, f) to (V’,ef’). Next suppose

2m+1

f( Z &vi) = 2521'71521’ + 6522m+17
i=1 i=1

2m+1 m
f( Z &ivg) = Zf%—lfzz' + £§m+1‘
i=1 i=1
By the above argument, there exists an isometry from (V’, f’) to (V,ef). This implies

the existence of an isometry from (V,e?f) to (V’,ef’). Since there is an isometry from
(V, f) to (V,€2f), we obtain the desired isometry from (V, f) to (V' ef"). n
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Proposition 2.7 The two quadratic forms given in (2.1) and (2.2) are not equivalent to
each other.

Proof. Let f, f' be the quadratic forms given in (2.1), (2.2), respectively. Suppose that
o:(V,f) — (V, f/) is an isometry and write o(v;) = S7% a0, A = (ay;). Then

By(vi,v;) = Byl(o(vi),o(v;))
2m—+1 2m—+1

= Y > amayBp(vgw),
k=1 I[=1

(B (vi,v5)) = "A(Bp (v, v5)) A.

Taking the determinants, we find (—1)™ = (detA)?(—1)™e. This is a contradiction since
€ is a non-square. [

Lemma 2.8 Let f be a non-degenerate quadratic form on a vector space V' of dimension
2 over K with chK # 2. Let € be a non-square in K. Suppose that the Witt index of f
is zero. Then there exists a basis {vi,v2} of V' such that

f(&or + &ua) = & — &3

Proof. If v is a nonzero vector, then f(v) # 0, so By(v,v) # 0. This implies that Bj|.,
is non-degenerate. By Proposition 1.3 we have V = (v) L (v)*. Since dim(v)* = 1,
we may put (w) = (v)t. We claim that there exists a vector vy with f(v;) = 1. If
f(v) or f(w) is a square, say f(v) = o? or f(w) = a?, then we may put v; = a~'v
or v; = a 'w, respectively. If neither f(v) nor f(w) is a square, then we can write
f(v) = ea?, f(w) = ¢3? for some o, € K. By Lemma 2.2, there exist elements
A, p € K such that e7! = X\? + p2. Defining v; = 2v + Gw, we find f(vi) = 1.

Now V' = (v;) L (v1)*, and put (u) = (vy)*. If —f(u) is a square, say —f(u) = o?,
then f(av; +u) = o?f(v1) + f(u) = 0, contradicting to the fact that the Witt index of f
is zero. Thus —f(u) is a non-square, that is, f(u) = —ea? for some a € K. If we define
vg by v = @~ u, then we obtain f(vy) = —¢ and f(& vy + &uy) = €2 — €5 as desired. m

Lemma 2.9 Let K be a finite field of characteristic 2.

(i) The mapping ¢ : K — K defined by o(a) = o*+« is an additive homomorphism,
and its image Im @ is a subgroup of K of index 2.

(ii) If a, B3 € K and the polynomials t*> +t + a,t*> +t + 3 € K[t] are irreducible over K,
then there exists an element X € K such that oo = A2 + X\ + .

Proof. (i) Clearly ¢ is an additive homomorphism:

platB)=(a+p) +(a+B) =a’+5 +a+5=gp(@)+e(8)
If « € Kery, then a(a + 1) = 0, hence Kerp = {0,1}. Thus |[Im¢| = |K|/|Kerp| =
| K/2.
(ii) Note that the polynomial ¢? + ¢ + « is irreducible over K if and only if a & Tm ¢.

Thus, if both 2+t +« and t2 4+t + (3 are irreducible over K, then o € Im ¢ and 8 & Im o.
By (i), it follows that a € Im ¢ + (3, proving the assertion. [ |
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Lemma 2.10 Let f be a non-degenerate quadratic form on a vector space V' of dimension
2 over K with chK = 2. Let o be an element of K such that the polynomial t> +t + « is

wrreducible over K. Suppose that the Witt index of f is zero. Then there exists a basis
{v1,v2} of V' such that

f(&or + &ua) = & + 66 + ok

Proof. If v is a nonzero vector, then f(v) # 0. Defining v; = 1/ f(v) 11}, we have f(v) =
1. Since By is non-degenerate by Proposition 1.6, there exists a vector w such that
By(vy,w) # 0. Since By(vy,v1) =0, we see w & (v1), hence V = (v1) @ (w). Replacing w
by By (v1,w) ™ 'w, we may assume By (vy, w) = 1. If *+t+ f(w) is reducible over K, that is,
if there exists an element ¢ such that £2+&+ f(w) = 0, then f(£v;+w) = 0, contradicting
to the fact that the Witt index of f is zero. Thus t? +¢ + f(w) is irreducible over K, and
hence by Lemma 2.9 (ii), there exists an element A € K such that o = A\? + A\ + f(w).
Put vy = Av; + w. Then {v1,v5} is a basis of V' and,

fl&ron +&ua) = & f(01) + & f(v2) + E162By(v1,v2)
&+ &+ w) + &E& By (v, vy + w)
= G+EN+ f(w) +N) +&&
= S+&4&+af],

as desired. -

Theorem 2.11 Let f be a non-degenerate quadratic form on V with dimV = 2m. Then
one of the following occurs.

(i) f has Witt index m, and there exists a basis {vy,...,vam} of V such that
2m m
f(z fz’%‘) = Zf%-lf%
i=1 i=1

(ii) f has Witt index m — 1, and there exists a basis {vy,...,vam} of V such that

(a) chK 1is odd, € is a non-square in K, and

2m m—1
f(z §ivy) = Z &ai-182i + &gt — E&om-
i=1 i=1

(b) chK =2, t* +t + « is an irreducible polynomial over K, and
2m m—1
f(z ivi) = Z Eoic1&2i + &1 + Eom—1&am + Q&5
i=1 i=1

Proof. Let d be the Witt index of f. By the second part of Proposition 2.4, we have d = m
or m — 1. Also by Proposition 2.4, there exist hyperbolic pairs {ve;_1,vy} (i =1,...,d)
such that

V = <’U1,U2> 4L <U2d_1,U2d> 1 W,
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where W is a subspace containing no nonzero singular vectors, and dimW = 0 or 2. If
d = m, that is, dim W = 0, then we obtain the case (i). If d = m —1, that is, dim W = 2,
then W is non-degenerate by Proposition 1.3. Now we obtain the case (ii) by Lemma 2.8
and Lemma 2.10. ™

Corollary 2.12 Let f,f' be non-degenerate quadratic forms on vector spaces V, V', re-
spectively, over K with dimV = dim V' = 2m. If the Witt indices of f and f’ coincide,
then f and f' are equivalent.

Proof. This follows immediately from Theorem 2.11. Note that the non-square € and the
element « in Theorem 2.11 (ii) can be chosen to be a prescribed one. n

Exercise. Show that the quadratic form f on GF(2)% defined by the homogeneous poly-
nomial % + x2 + 22 + 2129 + T374 + 1476 + T5T6 is non-degenerate. Find the Witt index

of f.
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3 Dual polar spaces as distance-transitive graphs

In this section we introduce three types of dual polar spaces associated with non-degenerate
quadratic forms. We shall show that the dual polar spaces admit a natural metric in-
duced by a graph structure, and the orthogonal group, which is the group of isometries,
acts distance-transitively on the dual polar space.

Definition. Let f be a non-degenerate quadratic form on a vector space V over a field
K. The orthogonal group O(V, f) is the group of automorphisms of f. More precisely,

OV, f)={oceGL(V)|f(v) = f(c(v)) for all v € V'}.

If V is a vector space of dimension 2m over a finite field K = GF(q), and f has Witt
index m or m — 1, we denote the orthogonal group O(V, f) by Oy(2m,q), O_(2m,q),
respectively. Note that by Corollary 2.12, there is no ambiguity as to which quadratic
form we refer to; the groups O, (2m,q) and O_(2m, q) are determined up to conjugacy
in GL(V). If V' is a vector space of dimension 2m + 1 over a finite field K = GF(q), we
denote the orthogonal group O(V, f) by O(2m + 1,¢q). Again by Corollary 2.6 (i), there
is no ambiguity when ch/K = 2. If chK is odd, then any non-degenerate quadratic form
is equivalent to either f or ef, where ¢ is a non-square in K. Since O(V, f) = O(V,ef),
there is no ambiguity in this case either.

Definition. Let f be a non-degenerate quadratic form on a vector space V' over a finite
field K = GF(q). A dual polar space is the set of all maximal singular subspaces of V:

X = {U]|U is a maximal singular subspace of V'}.

If f has Witt index d, then by Proposition 2.4, we see dimV = 2d + e, e = 0,1 or 2.
Also by Proposition 2.1, X consists of subspaces of dimension d. We say that the dual
polar space is of type Dy(q), Ba(q) or 2Dgy1(q), according as e = 0,1 or 2. By specifying
a type, a dual polar space is uniquely determined up to the action of GL(V'). Indeed by
Corollary 2.6 and Corollary 2.12, the only case we must consider is where dim V' and ¢
are both odd. Then any non-degenerate quadratic form is equivalent to either f or f,
where ¢ is a non-square in K = GF(q). A subspace is singular with respect to f if and
only if it is singular with respect to €f, so there is no ambiguity in the definition of X.

The usual definition of dual polar space includes those coming from an alternating
bilinear form and a hermitian form. In this lecture, however, we restrict our attention to
the dual polar space of the above three types.

For the remainder of this section, we denote by X the dual polar space defined by a
non-degenerate quadratic form f on V' of Witt index d.

Lemma 3.1 Let Uy,Usy € X and dim U, NUy, = d — k. Then there exist hyperbolic pairs
{ugi—1,u9;} (i=1,...,k) such that

Uy = (ui,us, ..., ugp—1) L Uy N Uy,

U2 = <U2,U4,...,U2k> J_ U1 ﬂUQ,

and
U1 + U2 == <U1,U2> 4L <U2k_1,u2k> 1 U1 N UQ.
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Proof. The assertion is trivial if U; = Us, so let us assume U; # U,. We prove by induction
on d. The case d = 0 is again trivial. Suppose d > 1. Pick a vector u; € Uy with uy & Us.
Then u; &€ Us-, since otherwise Us L {u;) would be a singular subspace, contradicting the
maximality of Us. Thus there exists a vector us € U, not orthogonal to u;. Replacing
us by By(ug,u) tug, we obtain a hyperbolic pair {u;,us}. By Proposition 1.3, we have
V =P 1 Pt and f|p. is non-degenerate, where P = (uy,us). Since f is non-degenerate
and f(uy) =0, (ug)® is a hyperplane of V' by Lemma 1.4. Also (us)® does not contain U;
since u; & (up)t. It follows that dim Uy N PL = dim Uy N {uy) N {ug)t = dim Uy N {ux)t =
d — 1. This implies that U; N Pt is a maximal singular subspace of (P*, f|p.), since
the Witt index of f|p: cannot exceed d — 1. Similarly, Uy N P+ is a maximal singular
subspace of (P, f|p.), and Uy NUsN P = U;NU,. The induction hypothesis applied to
U, N P+ and U, N P+ implies the existence of hyperbolic pairs {ug;_1, ug} (i =2,...,k)
such that
UyN Pt = (us,us,... ump_1) LU NUs,

UQOPL: <U4,U67...,UQ]€> J_UlﬂUg,

and
UlﬂPL—FUQﬂPL = <'LL3,U4> 4L <UQ]€,1,U2]€> J_UlﬂUg.

Since U; = (u1) L Uy N P+ and Uy = (uy) L Uy N P, we obtain the desired result. m

Theorem 3.2 [fU,,U,, U], U) € X and dim Uy NU; = dim U] NUJ, then there exists an
isometry o of V' such that o(Uy) = Uy, o(Uy) = US.

Proof. Suppose dimU; N U; = d — k. Then by Lemma 3.1, there exist hyperbolic pairs
{vai_1,v9;} (i =1,...,k) such that

Uy = (v1,vs,...,v9-1) L Uy N Uy,

Uy = (2, 04, ..., vak) L Uy NUs,

and
Ui+Uy;=H L U NUs,
where H = (v, v3) L -+ L (vgr_1,v9). By Proposition 1.3, we have V. = H L H* and
H* is non-degenerate. Also, H* contains a singular subspace U; N U, of dimension d — k.
It follows that U; N U, is a maximal singular subspace of H+ and f|;1 has Witt index
d — k. By Proposition 2.4, there exist hyperbolic pairs {vq;_1,v9;} (i = k+1,...,d) such
that
UrNU; = (Vaky1, Vorgss - - - V2d—1),
H* = (vakp1, Vagga) L -+ L (vog1,v0q) L W,

where W is a subspace containing no nonzero singular vectors, and dimW = 0,1 or 2.
Therefore,
V = (v1,v9) L -+ L (vag_1,v9q) L W.

Similarly, we can find hyperbolic pairs {vh; ;,v5;} (i =1,...,d) such that
V= <U/1>Ué> Lo L <Uéd—1vvéd> 1L Wl?
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where W is a subspace containing no nonzero singular vectors, dimW = 0,1 or 2,
A A / / /
Ul = (v, 05, ..., 05 1) LU NU,,
AR / / /
Uy = (v, 0}, ...,v) LU NU,,

/ 1 / /
UynU,= <U2k+1av2k+3a S 7U2d—1>'

We want to show that f|y and f|w are equivalent. This is the case if dim W = dim W’ =
0 or 2, by Corollary 2.12. If dimW = dim W’ = 1, and f|w is not equivalent to f|y-,
then f would be equivalent to both quadratic forms (2.1) and (2.2). This contradicts
to Proposition 2.7. Therefore, there exists an isometry from W to W’. Extending this
isometry by defining v; — v} (i =1,...,2d), we obtain the desired isometry. ]

The dual polar space becomes a metric space by defining a metric d by 9(U;, Us) =
d — dim Uy NU,. In order to check that 0 is a metric, we need to verify the following.

All but (iv) are obvious. The property (iv) is a consequence of the following lemma.
Lemma 3.3 Let Uy,Uy,Us € X. Then we have

dimU; NUy +dimUs; NU3 < d + dim U; N Us. (3.1)
Moreover, equality holds if and only if Uy NUs C Uy = Uy NUs + Uy N Us.
Proof. We have

dimU; N Uy + dim Uy N Us

= dim(U;NUy+UsNU;) +dimU; N U, N U3
< dimU; +dimU; NUs

= d+dimU, NUs.

Moreover, equality holds if and only if Uy NUs +UsNUs = Uy and Uy NU,NU3 = Uy NU3.
(]

Lemma 3.4 Let Ul,UQ,Ug e X. [f U2 = U1 N U2 + U2 N Ug, then U1 N U3 - UQ. In
particular, equality in (3.1) holds if and only if Uy = Uy N Uy + Uy N Us.
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Proof. Since

UnNUs C UfnUf
C (UNnU)t N (UynUs)*
= (UiNUs+UyNUs)*"
= Uy,

the subspace Uy N Uz + U, is singular. By the maximality of Uy, we obtain U; NUs C Us,.
[ |

Our next task is to show that this metric coincides with the distance in a graph
defined on X.

Definition. The dual polar graph of type Dy(q), Ba(q),?Dg411(q) is the graph with the
dual polar space X of type Dq4(q), Ba(q),?Das1(q), respectively, as the vertex set, where
two vertices Uy, Uy € X are adjacent if and only if dimU; NU; =d — 1.

In a graph, the distance between two vertices is the minimum of the length of paths
joining the two vertices.

Lemma 3.5 Let Wy, Wq,..., Wy € X be a path, that is, (W;_1,W;) is an edge of the
dual polar graph for alli=1,... k. Then dimWyN Wy + k > d.

Proof. We prove by induction on k. If £ = 0 the assertion is trivial. Suppose k£ > 1. By
induction we have dimWyNWy,_1 +k — 1 > d, so that

dimWoyNnWr+k > dmWoNnWe_1NW,+Ek

= dim Wy N Wiy +dim Wy_; N Wy
—dim(Wo N Wiy + Wi N W) + k
(d—k+1)4+(d—1)—dimWy_; + k
d,

as desired. -

Proposition 3.6 The metric O on the dual polar space X coincides with the distance in
the dual polar graph on X.

Proof. Let Uy,Us € X and 0(Uy,U;) = j. By Lemma 3.1, there exist hyperbolic pairs
{ugi_1,u9;} (i =1,...,7) such that

Uy = (ur,us, ..., ug—1) L (U NU,),

UQ = <U,2,U4, ce ,U2j> 1 (U1 N UQ)

and
U1 + UQ = <U1,U2> 11 <U2j,1,UQj> 1 (U1 N U2>
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Define a sequence of singular subspaces Wy, ..., W; by

Wo = (ui,us,...,ugj—1) L (UyNUs) =Un,
Wi = (ug,us, ..., us-1) L (U NUs),

W1 = (ug,ug, ..., uzj_9,u25_1) L (U3 NUs),
Wj = <U2,U4, Ce ,UQj,Q,’LLQj> 1 (Ul N Ug) = UQ.

Then each pair (W;, W, 1) is adjacent in the dual polar graph. Thus the distance between
U, and U, in the dual polar graph is at most j.

Conversely, let Uy = Wy, ..., W, = U, be a path of length k joining U; and U,. By
Lemma 3.5, we have k > d — dim Wy, N Wy, = 9(U;,U;) = j. Therefore, the distance
between U; and U, in the dual polar graph is exactly j. [ ]

Definition. Let I'" be a connected graph whose distance is denoted by 0. The graph I’
is called distance-transitive if, for any vertices z,2’,y,y" with d(z,y) = 0(«',y’), there
exists an automorphism o of I' such that o(z) = 2/ and o(y) = v

Theorem 3.7 The dual polar graph is distance-transitive.

Proof. This follows immediately from Theorem 3.2 and Proposition 3.6. [ ]
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4 Computation of parameters

Definition. Let I' be a graph. We denote by [';(z) the set of vertices of I which are
distance i from z. We also write I'(z) = I'1(z). A connected graph is called distance-
regular if, for any vertices z,y with y € I';(x), |Tis1(2)NT(y)| = b; and |T;_1(2)NT(y)| =
¢; hold, where b; and ¢; depend only on ¢ and independent of the vertices z,y. If I has
diameter d, then the numbers b; (0 < i < d —1) and ¢; (1 < i < d) are called the
parameters of the distance-regular graph I.

Clearly, a distance-transitive graph is distance-regular. In particular, the dual polar
graph is distance-regular of diameter d, where d is the Witt index. In this section we
compute the parameters of dual polar graphs explicitly.

Definition. If V' is a vector space of dimension n over GF(g¢), then the number of m-
dimensional subspaces of V' is denoted by [;LJ As is well-known, we have

n| (" - D@t =1)-- (¢ = 1)
[m] (qm —D)(gm1—1)---(¢g—1) (4.1)

b = b w

Indeed, counting in two ways the number of elements in the set
{(v1,v9, ..., 00, U)|U = (v1,02,...,0p), dimU = m}

we obtain
(" =D —q) (" —q"") = [n] @ =™ —q) - (" —q™ ),

from which (4.1) follows. The equality (4.2) follows immediately from (4.1).

For the remainder of this section, we assume that f is a non-degenerate quadratic
form of Witt index d on a vector space V' over GF(gq), and dimV = 2d 4+ ¢, e = 0, 1,2.
We begin by counting the number of singular vectors.

Proposition 4.1 The number of singular vectors in V is given by

q2d+e—1 . qd+e—1 + qd'

Proof. We prove by induction on d. The case d = 0 is trivial. Suppose d > 1. By
Proposition 2.4, we can write V=P L Py, 1 --- 1L P; L W, where P, (i=1,...,d) are
hyperbolic planes, W is a subspace containing no nonzero singular vectors, dim W = e.
Let {vy,v9} be a hyperbolic pair spanning Py, and put V' = P, L --- 1L P; L W. Then
by induction, the number of singular vectors in V' is ¢??+t¢=3 — ¢9+¢=2 4 ¢?=1. Thus the
number of singular vectors in V' is given by

{v e VIf(v) =0}
= |{)\1U1 + Aovs —|—?J/|)\1,)\2 € K, v e V/, Ao + f(’U,) = 0}|
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= N+ X+ 0| A e € K, 0 eV M =0, f(v') =0}
+H{Av1 + Agvg +0'[A, A € K, 0" € VI My = —f(v) # 0}
= (2¢ - D{v" € V| f(v) = 0}
+(g = D)™ = |{v/ € VI[f(v) = 0}])
¢V (g = 1)+ ql{v' € V'[f()) = 0}

_ q2(d—1)+e(q _ 1) + q(q2d+e—3 o qd+e—2 + qd—l)
_ q2d+e—1 o qd+e—1 + qd'

as desired. -

Lemma 4.2 If W is a singular subspaces of V', then f induces a non-degenerate quad-
ratic form of Witt index d — dim W on W+ /W. There is a one-to-one correspondence
between singular subspaces of W+ /W and singular subspaces of V' containing W .

Proof. First note that f(v+w) = f(v) for any v € W+ and w € W. Thus the mapping
fWHW — K, f(v+w) = f(v) is well-defined. One checks easily that f is a quad-
ratic form. If v+ W € Rad f, then f(v) =0 and Bf(v+ W,v'+ W) =0 for all v/ € W+.
Since
Bi(v+ W'+ W) = f((v+W)+ @ +W)) = flo+W)—f'+W)

= flo+0) = flv) = f(v)

= By(v,0'),
it follows that v € Rad (f|w.). By Lemma 1.4, we have v € W. Therefore, Rad f = 0.
Note that any singular subspace containing W is contained in W=. Note also that
there is a one-to-one correspondence between subspaces of W+ /W and subspaces of W+

containing W. Clearly, singular subspaces of W+ /W correspond to singular subspaces
of W+ containing W. ]

Proposition 4.3 The number of singular k-dimensional subspaces of V' is given by
d k—1 J -
i Ty
i=0

Proof. We prove by induction on k. The case k = 0 is trivial. Suppose that the formula
is valid up to k. We want to count the number of elements in the set

S ={(U, U)|U,(~] are singular, dimU =k, dimU =k + 1 and U C U}
Clearly
o o ket
|S| = {U|U is singular, dimU = k + 1}| e
By Lemma 4.2 and induction, we have
S| = [|{U]U is singular, dimU = k}|
x {W c U+/U|W is singular, dim W = 1}

d k—1 dreit (qd—k - 1)<qd—k+e—1 + 1)
= emimly ] .
M g(q +1) 1
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Therefore, the number of singular (k + 1)-dimensional subspaces is

i @ - D) -1

L H(qd+efi71+1)

=0 qg—1 ¢ 1
@) @ D) D) A
S T oD =D (=) il;[o(q +1)

d u d i—1
— +e—1— 1

as desired. ]

Theorem 4.4 Let " be the dual polar graph with vertex set X consisting of the maximal
singular subspaces of V.. Then T is a distance-reqular graph with parameters

qure(qdf’i _ 1)

by = ——2~ (1=0,...,d—1), 4.
1 (1=0 ) (4.3)

- ¢ -1 (i=1 d) (4.4)

c; = —1 1=1,...,d), .

Proof. Let Uy,U; € X and 9(Uy, Us) = i. To prove (4.3), assume 0 < i < d — 1 and put
Y = {W,U)UeX, dmUNUi=d—i—1, W=UNUs, dimW =d — 1}.

Clearly the correspondence (W,U) — U, Y — I';11(U;) N I(Us) is a bijection, so
Y| =0, If (W,U) €Y, then W is a hyperplane of Us. Moreover, since W N (U; NUy) =
UnNnUinUs,cUNU; anddmUNU; =d—1—1<d—1i=dimU; NUy, W does not
contain Uy N Us. Let Z be the set of such subspaces W, that is,

Z={W|W C Uy, dmW =d—1, W 3 U, nUs}.

For W € Z, set
Yiw ={U € X|W C U # Uy}.

Note that if U € Yy, then W = U NU,. Indeed, W C U NU, and dimW = d — 1,
dim U N U,y < d. Thus the sets Yy (W € Z) are mutually disjoint. We want to show

Y= [J{WU)U € Yi}. (4.5)

weZz

We have already shown that Y is contained in the right hand side. To prove the reverse
containment, pick W € Z and U € Y. Then W = U NU,. Since W =UNU, is a
hyperplane of Us not containing U; N Us, we have Uy = U NU; +U; NUs. By Lemma 3.4,
we have

In other words, dim UNU; = d—i— 1, which establishes (W, U) € Y. This completes the
proof of (4.5). Now |Y'| can be computed as follows. Note that there exists a one-to-one
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correspondence between singular d-dimensional subspaces containing W and singular 1-
dimensional subspaces in W+ /W in the sense of Lemma 4.2. Since W /W has Witt
index 1 and dimension 2 + e, the number of singular 1-dimensional subspaces in W+ /W
is ¢° + 1 by Proposition 4.3. It follows that |Yyy| = ¢° for any W € Z and hence

’Z‘:ld—J_L—J: 1’
q

qe+i(qd—i o 1)
g-1

Y=

This proves the formula (4.3).
To prove (4.4), assume 1 < i < d and set

Y:{W|U1QU2CWCU2, dlmW:d—l}

We want to show that the mapping ¢ : I';_1(U1)NI'(Us) — Y, U — UNUs is a bijection.
IfU € I';_1(Uy) NT'(Us), then by the second part of Lemma 3.3 we see UyNU; C U. Thus
we have Uy N Uy C U NUy C Uy which shows that ¢ is well-defined. We shall show that
the inverse mapping of ¢ is given by ¢ : Y — T, _(Uy) NT(Us), W — W + Wt N U;.
First note that W NU; = U; NU, for any W € Y. By Lemma 1.4,

dmW+NU, = dimW*+dimU;, — dim(W* + U))

dimV — dim W + d — dim((U, N Uy)* + Uy)

dim V 4 1 — dim(U; N Uy)™*

14+ dimU; N U,y

= d—i+1. (4.6)

v

Thus

dim(W +Wtnv,) = dimW+dimWtNU; —dimW nw+nu,
> d-1)+(d—i+1)—dimWnNU;
== 2d—i—dimU1ﬂU2
= d

Clearly W + W+ NUj is singular, so dim(W + W+ NU;) = d and equality in (4.6) holds.
This means (W +WNU)NU, = WNU, +WNU; = WHNU,; has dimension d —i+1,
that is, W+ W-NU; € T;_1(Uy). Also (W +WENU)NUy =W +WENUNUy =W,
This shows W + W+ N U, € T'(Uy), and at the same time ¢ o ¢ is the identity mapping
on Y. It remains to show ¢ o p(U) = U for all U € T';_1(U;) N['(Us). By Lemma 3.3, we

have

U = UnU,+UNU,
C UNUy+(UNU)* N,
= popU).
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Since we already know ¢ o p(U) € X, this forces U = 1 o p(U). Therefore, we have
established a one-to-one correspondence between Y and I';_1(U;) N T'(Us). Since the set
Y is in one-to-one correspondence with the set of hyperplanes in Us/U; N Us, we see

1 ] ¢ —1

= T (U AT = Y= " | = .
=Ty el =y = |, * | =25

This completes the proof. [ ]

Definition. A graph is called complete (or clique) if any two of its vertices are adjacent.
A coclique is a graph in which no two vertices are adjacent. A graph is called bipartite
if its vertex set can be partitioned into two cocliques.

Theorem 4.5 The dual polar graph of type Dy(q) is bipartite.
Proof. Fix a vertex U € X. By Theorem 4.4,

i d—i_l 1_1 d_1
q'(q ) ¢-1 _q _

b +¢; = = =by (i=0,1,...,d),
e qg—1 q—1 qg—1 o (i )

with the convention b; = ¢y = 0. This implies that I';(U) is a coclique for every i =
0,1,...,d. Thus X is partitioned into the sets

X, =T(U)UT3(U)U-- -,

Xo ={U}UTy(U)UuT4(U)U---,

which are cocliques. [
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5 Structure of subconstituents

In this section we discuss the structure of the subconstituents I'(U) and I'y(U) of the
dual polar graph I' of diameter d. As before, let f be a non-degenerate quadratic form
of Witt index d on a vector space V over GF(q), and dimV = 2d +e, e =0,1,2. Let T
be the dual polar graph with vertex set X consisting of the maximal singular subspaces

of V.

Theorem 5.1 Let Uy € X. The subgraph T'(Uy) is the disjoint union of cliques
{UeXWcU#U;} WcCU, dmW =d-—1), (5.1)

without edges joining them, each of which has size q°.

Proof. Clearly, the sets (5.1) are mutually disjoint cliques. By Lemma 4.2, the number
of elements in X containing W is the same as the number of singular 1-dimensional
subspace in W+ /W, which is, by Proposition 4.3, ¢¢ + 1. Thus we see that each of the
sets (5.1) has size ¢°. By Theorem 4.4, the valency of I'(U) is

e d—l e+1 d—l_l
bo_bl_clzq(q ) ¢ )_1:q6_1.

q—1 q—1

This implies that there are no edges in I'(U; ) other than those contained in some subset
of the form (5.1). n

Definition. The graph of alternating bilinear form Alt(d, q) has
Y = {A]A is an alternating matrix with entries in GF(q)}
as vertex set, two vertices A, B are adjacent whenever rank(A — B) = 2.

Theorem 5.2 Let T' be the dual polar graph of type Dy(q), Uy a vertex of T'. Let A
be the graph with vertex set I'y(Up), where two vertices Uy,Us are adjacent whenever
dimU; NUy; =d — 2. Then A is isomorphic to Alt(d, q).

Proof. In view of Theorem 2.11, we may assume the quadratic form f is defined by
2d d
FO_&w) = &lari
i=1 i=1

where {uy,us,...,usq} is a basis of V. Also by Theorem 3.2 we may assume Uy =
(u1,us, ..., ug). Define a mapping ¢ from Y to I'4(Uy) by

d
A= (Clij> = <Zaijui +ud+j‘j = 172, Ce ,d>

i=1

Since
d d

FQ aijui +uays) = By(Y aijui, uar) = ajy, (5.2)

i=1 i=1
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d d
Bf(z QUi + Ud4 g, Z Qi + Ugir)

i=1 i—1
d d
= By(>_ aijui, uark) + By(ugss, Y airu;)
=1 =1
= Qkj + Ajk, (53)

and (a;;) is alternating, we see that ¢(A) is singular. One checks easily dim¢(A) = d
and Uy N¢(A) = 0. Thus we have shown that ¢ is well-defined. Next we show that ¢ is
injective. Suppose ¢((ai;)) = ¢((bi;)). Then we have

d d d
D agu; 4 ugyy = > M(D biktt; + tgyr)
k=1 i=1

i=1
for some \; € GF(g). Comparing the coefficients of uqyy, for k = 1,...,d, we find A\, = ;5
and Z?Zl a;jU; = Z?Zl biju;. This implies a;; = b;;, hence ¢ is injective. Next we show
that ¢ is surjective. Suppose U € I'y(Up). Let {vy,...,v4} be a basis of U and write

d d
vj = Zbij“i + Z%‘%ﬂ-i (j=1,2,...,4d).
i=1 i=1

If the d x d matrix C' = (¢;;) is singular, then there exists a nonzero vector (as, ..., aq)
€ GF(q)¢ such that Z?:o ajc; =0forall i =1,...,d. But this implies 0 # Z;l:o a;v; €
Uy N U, which is a contradiction. Thus C' is nonsingular. Put A = (a;;) = (b;;)C~* and
wy = S ag; + uger (k=1,...,d). Then

d d d
W = Z Z bij(C_l)iji + Z 5ikud+i
=1 j=1 =1
d ’ d d d
= Y (CT > biyui+ 30> i (C7) jrttag
j=1 i—1 i=1j=1
d
= ZI(C_I)ijja
=

so that {wy,...,ws} is a basis of U. Since U is singular, (5.2) and (5.3) imply that A
is alternating. This shows ¢(A) = U, proving the surjectivity. Finally we want to prove
that ¢ preserves adjacency. Let A, B € Y. Then

dimp(A) Np(B) = 2d - dim(p(A) + ¢(B))

A B
= Qd—rank(] I>

A-B B
0 I
= d—rank(A — B).

= 2d — rank (

This implies rank(A — B) = 2 if and only if dim ¢(A) N p(B) = d — 2. Therefore, ¢ is an
isomorphism of the graphs Alt(d, ¢) and A. ]
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Definition. Let I" be a bipartite graph whose vertex set X has a bipartition X; U X5. A
bipartite half of I' is the graph with vertex set X;, and two vertices are adjacent if and
only if their distance in I' is 2.

Theorem 5.3 Let T',T" be the dual polar graphs of type Da.1(q), Ba(q), respectively. Let
A be a bipartite half of T, and let A be the graph with the same vertex set as I', and two
vertices Uy, Us of A are adjacent whenever dimU; N Uy = d — 1 or d — 2. Then A s
isomorphic to A. Choose a vertex Uy of T such that Tq1(Uy) is contained in the verter
set of A, and pick a vertex Uy of T'. Let A be the subgraph of A induced on fd+1(00), and
let A be the subgraph of A induced on U'y(Uy). Then A is isomorphic to A.

Proof. Let f be a non-degenerate quadratic form of Witt index d + 1 on V, where
dimV = 2d + 2. We may assume that f is given by

2d+2

d
f( Z iui) = Z&fdﬂ' + &2d+182d42-
i=1 i=1

where {uy, ..., us2} is a basis of V. Let T be the dual polar graph of type Dgy1(g) with
vertex set )~( consisting of the maximal singular subspaces of V. We may assume Uy =
(ug,ug, ..., ug,usqr1), and that A is the bipartite half of T’ with vertex set X; containing
de(UO). Put v = usgi1 + Usgro, V = (v)t. Since f(v) = 1, V is non-degenerate by
Proposition 1.3. Let I' be the dual polar graph of type B,(q) with vertex set X consisting
of the maximal singular subspaces of V. We may assume Uy = (uy, ug, ..., uq). We define
a mapping ¢ : X; — X by ¢(U) = UNV and show that ¢ is an isomorphism from A
to A.

Clearly, UNV is a singular d-dimensional subspace of V' for any UeX,. HU,NV =
UgﬂV for some Ul, U, € Xl, then dim U; NUy > d. Since X is a coclique in F this forces
U1 U,. Thus @ is injective. If U € X, then by Lemma 4.2, the number of elements in
X containing U is the same as the number of singular 1-dimensional subspace in U+ /U,
which is 2 by Proposition 4.3. Let Ul, Us be the elements of X containing U. Then U,
and U2 are adjacent in . Thus one of U1 or UQ belongs to X1 Also U = U1 NV = UgﬂV
This proves the surjectivity of .

Suppose 171,(72 € X,. Since o( 1) (~ U) = Uy NU, NV, we have dim U1 N U2 =
dim @(U;) N o(Uy) or dimo(U;) N @(Us) + 1. Since d + 1 — dim U, N Uy = (U4, Us) is
even, this implies that

dmU, NU, =d -1 <= dimp(U)Nel,)=d—1ord—2.

Therefore, ¢ is an isomorphism from A to A.

Let us restrict the isomorphism ¢ to [gyq(Up). Note that gp(U) NUy = UnUyNV for
any U € X;. Thus, in particular, o(U) € Ty(Uy) for any Ue Fd+1(Uo) Conversely, if
cp(U) € I'4(Up), then dlmUﬂUo < 1. This implies U € Fd(UO) UFdH(UO) Since U € X7,
we obtain U € T'g41(Up). Therefore, ¢ induces a bijection between FdH(UO) and T'y(Up).
As ¢ is an isomorphism from A to A, the restriction of ¢ to T'q1(Up) is an isomorphism
from A to A. ]

The graph A in Theorem 5.3 is known as the distance 1-or-2 graph of I'; since two
vertices are adjacent in A if and only if their distance in I' is 1 or 2, by Proposition 3.6.
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It is important to note, however, that the graph A is not the distance 1-or-2 graph of the
subgraph induced on I'y(Uy) by I'. We shall determine which pair of vertices in I'y(Up)
at distance 2 apart in I" are at distance 2 in the subgraph induced on I';(Uy) by T

Proposition 5.4 Let I' be the dual polar graph of type By(q) and let Uy be a vertex of
['. Suppose Uy, Us € Tq(Upy) and dimU; NUsy = d — 2. Then dim(U; + Us) NUy = 1 or
2. Moreover, there exists a path of length 2 joining Uy and Us in Tq(Uy) if and only if

Proof. Since 2d = dim(Uy + Uy) < dim(Uy + Uy + Us) < 2d + 1, we have

dim UO N (Ul + UQ) = dim UO + dlm(U1 + Ug) — dlm(Uo + Ul -+ Ug)
= 1or?2.

Suppose dim Uy N (Uy + Us) = 1, say Uy N (Uy + Us) = (ug). Since Uy N Uy and
Ui N {ug)* cannot cover Uy, we can find a vector u; € U; such that u; & Us, uy & {ug)*.
Since dim Us N (u1)t = d—1 > d—2 = dim U, N Us, we can find a vector uy € Uy N (uy)*
such that uy ¢ Uy. The subspace U = (uy, us) L UyNU, is a singular subspace adjacent to
both Uy and Us. Since U C U, +Us, we have UyNU C (ug). But we have ug ¢ (u;)* D U,
so that Uy N U = 0. Therefore, (U, U, Us) is a path of length 2 in T';(Uy) joining U; and
UQ.

Next suppose dim Uy N (Uy + Uy) = 2. Put H = Uy + Uy + Us. Then dim H = 2d,
hence H = Uy + Uy, which is non-degenerate by Lemma 3.1. We can regard Uy, Uy, Us as
vertices of the dual polar graph X of type Dy(q) defined on H, and then Uy, Uy € 34(Up).
Suppose that there exists a path (Uy, U, Us) of length 2 in I'y(Uy). By Lemma 3.3 we have
U=UnNU+UNU, CU; + Uy C H. This implies U € ¥4(Up). This is a contradiction
since 34(Up) has no edge by Theorem 4.5. ]

Both cases in Proposition 5.4 do occur. With the notation of the proof of Theorem 5.3,
put
Ur = (Udt1, Udra, - - - u2q) € Ta(Uo),
Uy = (ug + Udr1, U1 — Udya, Udss, - - - Uzd) € Ta(Up).

Then dim Uy N Uy = d — 2 and (Uy + Us) N Uy = (uq, ug). If we put
Uy = (U1 — tg1 + v, U1 + U1 + Uz — Udga, Ugss, - - - Uza) € Ta(Uo),

then dim Uy, N U, = d — 2 and (Uy + Uj) N Uy = (uy + us).

When ¢ is a power of 2, the isomorphism between A and A exhibited in Theorem 5.3
gives rise to a mysterious nonlinear bijection between alternating matrices and symmetric
matrices of size one less.

Lemma 5.5 Let ¢ be a power of 2 and A = (a;;) be a symmetric d x d matriz with
entries in GF(q). Let a be the row vector whose entries are the square roots of the
diagonal entries of A: a = (\/a11,\/a22, - - -,+/Aaq). Then the d x (d + 1) matriz (A 'a)

has the same rank as A.
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Proof. Suppose that a vector b = (b1, by, ..., by) is a left null vector of A: 3¢, biai; =0
(j=1,2,...,d). Then we have

d d
O bivau) = Y bia
=1 =1

d d d
= Z b?CLn + Z bibjaij + Z bibjal-j
=1

1<j 1<j
d d

= Z b?CLn + Z bibjal-j
i=1 1#£]
d

= D ;> biay

j=1 i=1

= 0.

This implies that b is also a left null vector of (A 'a). Thus A and (A a) has the same
left null space, so we obtain rankA = rank(A ‘). n

Definition. The graph of symmetric bilinear form Sym(d, ¢) has
Y = {A|A is an symmetric matrix with entries in GF(q)}
as vertex set, two vertices A, B are adjacent whenever rank(A — B) = 1.

Theorem 5.6 Let I' be the dual polar graph of type Bq(q), Uy a vertex of T'. If q is a
power of 2, then there ezists an isomorphism y from the graph Sym(d,q) to the subgraph
induced on Ty(Uy) by I'. Moreover, dim p(A) N ¢(B) = d — rank(A + B) holds for any
vertices A, B of Sym(d, q).

Proof. In view of Theorem 2.11 and the definition of dual polar space of type By(q), we
may assume that the quadratic form f is defined by

2d+1

d
f( Z §iug) = Z&fdﬂ‘ =+ f§d+17
=1 =1

where {uy, ug, ..., usqr1} is a basis of V. Also by Theorem 3.2 we may assume U, =
(ug,ug, ..., uq). Let Y be the set of vertices of Sym(d, q) and define a mapping ¢ from
Y to I'4(Uy) by

d
A= (aij) — <Z aijui +Ud+j + 3/ajju2d+1’j = 1,2, Ce ,d>

=1
Since

d d

FO aijui + uasj + Bjjusasr) = ;j + Bp (> ajjus, uar )
=1 i=1

== ?j + ajj, (54)
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d d
By (> aiju; + tar; + Bjjusait, Y Gt + Uark + Brwtizatt)

i=1 =1
d
= Bf(z ijti, Ugik) + By (Uay g, Z Aik;)
i=1 i=1
= Qkj + Qjk, (55)

and (a;;) is symmetric, we see that p(A) is singular. One checks easily dim p(A) = d
and Uy N ¢(A) = 0. Thus we have shown that ¢ is well-defined. Next we show that ¢ is
injective. Suppose ¢((a;;)) = ¢©((b;j)). Then we have

d d d
> aiui + vars + /ajuzar1 = O Me(D bt + ugsr, + \/Orrtizar)

i=1 k=1 i=1

for some A, € GF(¢). Comparing the coefficients of w4y, for k =1,...,d, we find Ay, = 0y,
and Zle ;U = Z‘le biju;. This implies a;; = b;;, hence ¢ is injective. Next we show
that ¢ is surjective. Suppose U € I'4(Up). Let {vy,...,v4} be a basis of U and write

d d
vj = Z biju; + Z Cijlari + Va1 (J=1,2,...,d).

i=1 i=1
If the d x d matrix C' = (¢;;) is singular, then there exists a nonzero vector (as, ..., aq)
€ GF(q)? such that Z?:o ajcij =0foralle=1,...,d. But this implies 0 # Z;-l:o ;v €
FH0) N (Uy L {uggsr)) = Uy, Which contradicts to U N Uy = 0. Thus C' is nonsingular.
Put A = (a) = (bZ])C’ LG = 25 4 (C Ny (k=1,...,d) and wp = X% aju; +
Ud+k -+ ﬁku2d+1 (k‘ = 1 d) Then

MR.
rg

w = z] B ]kuz + Z 5zkud+z + Z ]k/YJUQd—I—I
=1
d
= Z Z ijuz + Z Z ng B ]kud—H + Z ]k/}/]qu—l—l
j=1 i=1j=1 Jj=1
d
= 2 (C7v;,
j=1
so that {wy,...,wy} is a basis of U. Since U is singular, (5.5) implies that A is symmetric.

Then the equality (5.4) implies p(A) = U, proving the surjectivity. Finally we want to
prove that ¢ preserves adjacency. Let A, B € Y and denote by a,b the row vectors
whose entries are the square roots of the diagonal entries of A, B, respectively. Then

dimp(A) Ne(B) = 2d—dim(p(A) + ¢(B))

Sy

= 2d —rank

oo M~

o+ +
O-'UU T~

= 2d —rank

~ T O
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= d—rank<A+B>

a+b
= d—rank(A+ B)

by Lemma 5.5. This establishes the second part of the assertion, which also shows that
¢ is an isomorphism of the graphs Sym(d, ¢) and I";(Up). u

If one follows the proofs of Theorem 5.2, Theorem 5.3 and Theorem 5.6, it is not hard
to construct a correspondence from Alt(d+ 1, q) to Sym(d, ¢) when ¢ is a power of 2. We
shall do this explicitly.

Let V be a vector space of dimension 2d + 2 over GF(q), where ¢ is a power of 2.
Suppose that f is a quadratic form defined by

2d+2

d
f( Z §iug) = Z §iavi + Eaar182d+2,
i=1 i=1

where {uy,ug, ..., usq12} is a basis of V. Let Uy = (ug,...,uq,usqr1). Then an iso-
morphism from Alt(d + 1,¢) to the (d + 1)-st subconstituent of Dy1(q) is given by
w A= (a;) — (vjlj = 1,2,....d + 1), where v; = Zle iU + Qgy1;U2d+1 + Udtj
(j = 1,2, . ,d), Vd+1 = 2?21 Qi d+1U; + U2d4-2- Put v = U2d+1 + U2d+2, V = <U>l. Then
flv is a non-degenerate quadratic form of Witt index d, and ¢(A) NV is a maximal
singular subspace of V' which intersects trivially with the maximal singular subspace
(ur,ug, ..., ug). Since By(vj,v) = aqq1,; for j =1,2,...,d and Bf(vg41,v) = 1, we see

p(A) NV = (vj + agr10a11li = 1,2,... . d).

and
d

(o + Ad+1,;Vd+1 = Z(aij + ad+1’iad+17j)ui + U5 + Ad41,50-
i=1
Under the correspondence given in Theorem 5.6, the subspace ¢(A) NV is mapped to
the symmetric matrix A() + taa, where AO = (aij)ogﬂjgd, ta = (adH,l, Ad+1,2, - - - ,ad+1’d).
The above argument gives the following theorem.

Theorem 5.7 Let q be a power of 2. The graph Alt(d + 1,q) is isomorphic to the
“merged” symmetric bilinear forms graph, which has the same vertex set of Sym(d,q),
and two vertices A, B are adjacent whenever rank(A + B) =1 or 2, under the mapping

P ( /;0 tg ) — Ap + 'aa, (5.6)

where Ag is a d X d alternating matrix.

This theorem can be proved without passing to dual polar graphs. See Appendix C.
A proof for the case ¢ = 2 can be found in [3].

Again we should note that the “merged” symmetric bilinear forms graph is not the
distance 1-or-2 graph of the symmetric bilinear forms graph. This follows immediately
from Proposition 5.4 and Theorem 5.6. Let ¢ be a power of 2, A, B € Sym(d, q) and
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suppose rank(A + B) = 2. Let us derive a condition when A and B are distance 2
apart in Sym(d, ¢). With the notation of Proposition 5.4 and Theorem 5.6, the distance
between A and B is greater than 2 if and only if dim Uy N (¢(A) + ¢(B)) = 2. Since
dim(p(A) + ¢(B)) = d + 2, this is equivalent to dim(Uy + ¢(A) + ¢(B)) = 2d. On the
other hand,

I A B
dim(Up + ¢(A) +¢(B)) = rank| 0 I [
0O a b
B I A+B
= d—i—rank( 0 atb )
= 2d+ rank(a+b),

where a, b are the row vectors whose entries are the square roots of the diagonal entries
of A, B, respectively. Thus, the distance between A and B is greater than 2 if and only
if A+ B is alternating.

Of course, one can argue without using the correspondence given in Theorem 5.6.
Here we present a more straightforward way.

Lemma 5.8 Let q be a power of 2 and A = (a;;) be a symmetric matriz with entries in
GF(q). Let a be the row vector whose entries are the square roots of the diagonal entries

of A: a = (\/ai11,+\/a22, - ,\/Gad). If A has rank 1, then A = 'aa.

Proof. If A has rank 1, then Proposition 1.5 implies that A is not alternating. In
particular, not all diagonal entries are 0. Suppose ax, # 0. Since A has rank 1, every
row vector of A is a scalar multiple of the k-th row. This implies a;; = agjaix/axy for any
i,j. Since A is symmetric, putting ¢ = j gives a;, = \/a;;ax,. Thus

ij -~ iijj
for all 4, 7. This proves the desired formula A = ‘aa. [ ]

If A and B are distinct symmetric matrices of rank 1, then Lemma 5.8 implies that

A = 'aa and B = bb for some vectors a,b with a # b. Then the diagonals of A and

B are distinct, hence A + B is not alternating. Conversely, if A is a non-alternating

symmetric matrix of rank 2, then one can easily show that there exists a nonsingular
matrix B such that

10

'‘BAB=1| 0 1

thus A is a sum of two symmetric matrices of rank 1. To summarize:

Theorem 5.9 Let q be a power of 2, A, B wvertices of Sym(d,q). Then the distance
between A and B is 2 if and only if rank(A + B) = 2 and A+ B is not alternating.
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Appendix

A Witt’s extension theorem

Many of the results in sections 2,3 can be derived easily from the Witt’s extension the-
orem. However, I have opted to exclude the Witt’s extension theorem from the main
text since its proof is rather complicated. In this section we let f be a non-degenerate
quadratic form on a vector space V over an arbitrary field.

Lemma A.1 IfV is a hyperbolic plane, then the group of isometries of (V, f) acts tran-
sitively on the set of nonzero singular vectors.

Proof. This is immediate from Proposition 1.8. [

Lemma A.2 Let U be a degenerate hyperplane of V.. Assume that By is non-degenerate.
Then any isometry o : U — V is extendable to V.

Proof. Let uw € Rad (f|y). Since By is non-degenerate, we have (u) = U, and hence
Rad (Bf|y) = Rad (f|y) = (u). Write U = Uy L (u). Then By|y, is non-degenerate, so
V =Uy L Ui AlsoV = o(Uy) L o(Up)t. Note that we have u € Uy, o(u) € o(Up)*,
and f(u) = f(o(u)) = 0, so that Ug- and o(Uy)* are hyperbolic planes. By Lemma A.1,
there exists an isometry 7 : Ul — o(Up)* such that 7(u) = o(u). Now oy, L 7 is an
extension of o to V. |

Lemma A.3 If G is a group and A, B are subgroups of G such that G = AU B, then
either G = A or G = B.

Proof. Suppose contrary. Then there exist elements a € A, b € B such that a ¢ B,
b ¢ A. Then the product ab ¢ AU B, which is a contradiction. ]

Theorem A.4 (Witt’s Extension Theorem) Let f be a quadratic form on a vector
space V' such that By is non-degenerate. Suppose that U is a subspace of V ando : U — V
1s an isometry. Then there exists an extension o* :'V — V of 0.

Proof. We prove by induction on dim U. If dim U = 0 then the assertion is trivially true
by taking ¢* = 1y,. So let us assume 1 < dimU < n — 1, where n =dim V. If o0 = 1y,
then again we can take ¢* = 1y, so we assume o # 1. Choose an arbitrary subspace Uy
of U with dim Uy = dim U — 1. By induction there exists an isometry 7 : V' — V such
that 7|y, = o|y,. If there exists an extension & of 77! o o, then 7 0 7 is an extension of
0. Thus, without loss of generality we may assume oy, = 1, .

Write U = Uy ® (a), W = Uy ® (b), where b = o(a). If there exists a vector z ¢ UUW
such that By(z,a) = By(z,b), then we may replace U, W, Uy by U@ (z), W& (z), Uy (2),
respectively, and extend o to U @ (z) by defining o(z) = z. Continuing this process until
it is no longer possible, or we have U = V' in which case the proof is complete. Suppose
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U # V. Then we must have (a — b)* C UUW. By Lemma A.3, we have either
{a — b)Yyt C U or {a—0b)*t CW. Since U and W are proper subspaces and (a — b)~* is a
hyperplane, we see (a — b)~ = U or W. In particular, a € {a — b)* or b € (a — b)*. On
the other hand, f(a) = f(b) implies

By(a,a) = f(a) + f(b) = Bf(b,b),

and hence
Bg¢(a,a —b) = f(a—b) = Bf(b—a,b).

Therefore f(a — b) = 0. This implies a — b € Rad (f|y), that is, U is degenerate. Now o
is extendable to V' by Lemma A.2. ]

The non-degeneracy of By in the hypothesis of Theorem A.4 is necessary, as the follow-
ing example indicates. Under an appropriate condition, the conclusion of Theorem A.4
holds even if By is degenerate. See Theorem A.6 and [4], 7.4 Theorem.

Ezample. Consider the quadratic form f = z1xy + 23 on GF(2)?. The mapping o :
(e3) — V, e3 — €1 + €9 is an isometry but it has no extension to V. Indeed, (e3) is the
radical of By which must be left invariant under any isometry of V.

Lemma A.5 If Uy, U,y are singular subspaces of V', then (U + Us) N Rad By = 0.

Proof. Let v € (U + Us) NRad By, v = uy + ug, uy € Uy, ug € Us. Then f(v) =
f(ur + ug) = By(ug,ug) = By(uq,v) = 0. Since f is non-degenerate, we see v = 0, that
iS7 (U1+U2)ﬂRadBf:O. |

By the following theorem, the dimension of any maximal singular subspace is equal
to the Witt index.

Theorem A.6 Let f be a non-degenerate quadratic form on a vector space V over K.
If Uy, Uy are maximal singular subspaces of V', then there exists an isometry o of V' such
that o(Uy) = Us. In particular, dim U; = dim Us.

Proof. Without loss of generality we may assume dim U; < dim U,. Then any injection
o : Uy — U, is an isometry. Suppose first that By is non-degenerate. By Witt’s
extension theorem, there exists an extension of o to V', which we also denote by o. Then
o~ 1(Uy) is a singular subspace containing U;, hence by the maximality of U;, we have
U, = 07 1(Uy), in other words, o(U;) = Us.

Next suppose that By is degenerate. By Lemma A.5, we have (U; +U)NRad By = 0.
This implies the existence of a hyperplane W containing U; + U, with V = W @ Rad By.
As By|w is non-degenerate, we can apply the first case to obtain an extension of o to W.
Extending o further to V' by defining o|raq 5 + = lraa B;, we obtain the desired isometry
of V. ]

Using the Witt’s extension theorem, we can give an alternative proof of Theorem 3.2.

Proof of Theorem 3.2. By Lemma A.5, we have (U1+Uz)NRad By = (U;+Uj)NRad By =
0. This implies that there exist hyperplanes W, W’ complementary to Rad By, containing
Uy + Uy, Uy + Uj, respectively. Now f|y and f|y- are non-degenerate, and have Witt
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index d, as W and W’ contain singular d-dimensional subspaces. By Corollary 2.12
there exists an isometry 7 : W/ — W. On the other hand, there exists an isometry
oo : Uy + Uy — Uj + Uj, satistying o¢(Uy) = Uy and 0¢(Us) = Uj by Lemma 3.1. The
composition 7 o gy is an isometry U; + Uy — W which can be extended to an isometry
p: W — W by Witt’s theorem. Now 771 op: W — W' is an isometry extending
0o. Finally the isometry o defined by oy = 77! 0 p, 0|Raa B; = lRraa B, has the desired
property. [ |
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B Transitivity without Witt’s theorem

In this section we shall show that the orthogonal group acts transitively on the set of
maximal singular subspaces, without using the Witt’s extension theorem. The method
used here works for an arbitrary base field. I would like to thank William Kantor for
informing me of this approach.

Throughout this section, we assume that f is a non-degenerate quadratic form on a
vector space V.

Lemma B.1 The group of isometries of (V, f) acts transitively on the set of nonzero
singular vectors.

Proof. Let u,v be nonzero singular vectors. We want to show that there exists an
isometry o such that o(u) = v.

Case 1. By(u,v) # 0. In this case P = (u,v) is a hyperbolic plane and V = P 1 P+,
By Lemma A.1 there exists an isometry o of P such that o(u) = v. Extending ¢ to V
by defining o|p1. = 1p1, we obtain the desired isometry.

Case 2. By(u,v) = 0. We claim that there exists a singular vector w such that
B¢(u,w) # 0, Bf(v,w) # 0. Then the proof reduces to Case 1. As for the claim, pick a
vector z ¢ (u)* U (v)t. This is possible by Lemma A.3. Then by Proposition 1.7 there
exists a singular vector w € (u, z) such that By(u,w) = 1. We also have By(v,w) # 0,
since (u,w) = (u,2) ¢ (v)* and u € (v)*. m

Theorem B.2 The group of isometries of (V, f) acts transitively on the set of singular
k-dimensional subspaces for any given k.

Proof. We prove by induction on k. The case k = 1 has been established in Lemma B.1.
Suppose 1 < k < d, where d is the Witt index. By Proposition 2.4 we may write

V = (v1,v9) L -+ L (vag—1,02q) L W,

where {vy;_1,v9;} (i = 1,...,d) are hyperbolic pairs and W is a subspace containing
no nonzero singular vectors. Let U be a singular subspace of dimension k. We want
to construct an isometry o of V such that o(U) = (v1,v3,...,v9,-1). Pick a nonzero

vector v € U. By Lemma B.1, there exists an isometry 7 of V such that 7(u) =
vy. If we write P = (vi,vq), then P N 7(U) = (v)t N 7(U) is a singular (k — 1)-
dimensional subspace of P*. By induction, there exists an isometry p of P+ such that
p(PENT(U)) = (vs, ..., v9_1). Since 7(U) = (v;) L PN7(U), we find (1p L p)or(U) =
(v1,03,...,09,_1), that is, 0 = (1p L p) o7 is an isometry with the desired property. m
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C Another proof of Theorem 5.7

Theorem 5.7 can be proved directly. It is easy to see that the mapping 1 defined in (5.6)
is bijective. To show that v preserves adjacency, let

[ Ay f ([ By ™
=(3a) o=V )

be vertices of Alt(d + 1,q), where Ay, By are d x d alternating matrices. Then we have

rank(A + B)
= rank<A0+BO t(a—t—b))
a+b 0
= rank<A0+B0+t(a+b)(a+b) t(a‘i‘b))
a+b 0

B I Y(A)+¢(B)+ a+bb+b(a+b) (a+b)
- ran a+b 0
_ k( U(A) +6(B) {a+b) )

a+b 0 '

Since a + b is the vector consisting of the square roots of the diagonal entries of 1(A) +
¥ (B), we have, by Lemma 5.5,

rank(A + B) = rank(¢(A) +¢¥(B)) or rank(y(A)+¢(B)) + 1.

In particular, rank(A + B) = 2 if and only if rank(¢(A) + ¢/(B)) = 1 or 2. This shows
that ¢ is an isomorphism from Alt(d + 1,¢) to the “merged” symmetric bilinear forms
graph.
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D Notes

The example on page 5 may be a good exercise for students. During my lecture, I have left
as exercises the proofs of Proposition 1.1, Proposition 1.5, Proposition 2.7, Lemma 3.3,
Proposition 4.3, and the equalities (4.1), (4.2).

All, or part of materials in the first two sections can be found in many books, for
example, [4], [6]. The books [1], [5] are excellent for beginning students, but they do not
deal with quadratic forms in characteristic 2. All results in sections 3,4, and a part of
section 5 can be found in [2]. It is more natural to identify the graph Sym(d, ¢) with the
d-th subconstituent of the dual polar graph of type Cy(q), than we did in Theorem 5.6.
The detailed discussion in the latter part of section 5 of dual polar graphs and symmetric
bilinear forms graphs has not been available in previously published work.
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