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x ∈ C⊥ =⇒ |S ∩ B| : even for∀blockB, whereS = supp(x).

S |B| = 8
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Let C ⊂ F

24
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ =⇒ |S ∩ B| : even for∀blockB, whereS = supp(x).

S |B| = 8
nj = #blocksB with |S ∩ B| = j (j = 2, 4, 6, 8).
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2 be the binary code generated by its incidence matrix.
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λi (i = 1, 2, 3, 4, 5).
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S(5,8,24)
Let C ⊂ F

24
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ =⇒ |S ∩ B| : even for∀blockB, whereS = supp(x).

S |B| = 8
nj = #blocksB with |S ∩ B| = j (j = 2, 4, 6, 8).

Counting#(I,B) with I ∈
(

S∩B
i

)

,

∑

j=2,4,6,8

(

j

i

)

nj =

(|S|
i

)

λi (i = 1, 2, 3, 4, 5).

4 unknownsn2, n4, n6, n8.
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24
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ =⇒ |S ∩ B| : even for∀blockB, whereS = supp(x).
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S(5,8,24)
Let C ⊂ F

24
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ =⇒ |S ∩ B| : even for∀blockB, whereS = supp(x).

S |B| = 8
nj = #blocksB with |S ∩ B| = j (j = 2, 4, 6, 8).

Counting#(I,B) with I ∈
(

S∩B
i

)

,

∑

j=2,4,6,8

(

j

i

)

nj =

(|S|
i

)

λi (i = 1, 2, 3, 4, 5).

4 unknownsn2, n4, n6, n8. 5 equations=⇒

|S|(|S| − 8)(|S| − 12)(|S| − 16)(|S| − 24) = 0.
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48
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Assume that every pair of blocks interset at even number of points.
Let C ⊂ F

48
2 be the binaryself-orthogonal(C ⊂ C⊥) code generated

by its incidence matrix.

x ∈ C⊥ has minimal weight inx + C, S = supp(x) 6= block =⇒
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5-(48, 12, λ) design
Assume that every pair of blocks interset at even number of points.
Let C ⊂ F

48
2 be the binaryself-orthogonal(C ⊂ C⊥) code generated

by its incidence matrix.

x ∈ C⊥ has minimal weight inx + C, S = supp(x) 6= block =⇒

|S ∩ B| : even and≤ 6.

S |B| = 12
nj = #blocksB with |S ∩ B| = j (j = 2, 4, 6).

∑

j=2,4,6

(

j

i

)

nj =

(|S|
i

)

λi (i = 1, 2, 3, 4, 5).

3 unknownsn2, n4, n6; 5 equations =⇒ a contradiction. =⇒
C = C⊥ andS is a block.
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• C has minimum weight12,
• C has17296 codewords of weight12 by self-duality.
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incidence matrix. ThenC satisfies
• C = C⊥,
• C has minimum weight12,
• C has17296 codewords of weight12 by self-duality.
• the codewords of weight12 are the blocks of the design. In

particular,λ = 8.
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Let C ⊂ F

48
2 be the binary self-orthogonal code generated by its

incidence matrix. ThenC satisfies
• C = C⊥,
• C has minimum weight12,
• C has17296 codewords of weight12 by self-duality.
• the codewords of weight12 are the blocks of the design. In

particular,λ = 8.

The uniqueness of this design follows from the uniqueness ofsuch a
code(Houghten–Lam–Thiel–Parker, 2003).
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5-(48, 12, λ) design
Let C ⊂ F

48
2 be the binary self-orthogonal code generated by its

incidence matrix. ThenC satisfies
• C = C⊥,
• C has minimum weight12,
• C has17296 codewords of weight12 by self-duality.
• the codewords of weight12 are the blocks of the design. In

particular,λ = 8.

The uniqueness of this design follows from the uniqueness ofsuch a
code(Houghten–Lam–Thiel–Parker, 2003).

A quasi-symmetric2-(45, 9, 8) design is also unique(Harada–M.–

Tonchev, 2005).
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5-(72, 16, λ) design
Assume that every pair of blocks interset at even number of points.
Let C ⊂ F

72
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ has minimal weight inx + C, S = supp(x) 6= block =⇒

|S ∩ B| : even and≤ 8.

S |B| = 16
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Assume that every pair of blocks interset at even number of points.
Let C ⊂ F

72
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ has minimal weight inx + C, S = supp(x) 6= block =⇒

|S ∩ B| : even and≤ 8.

S |B| = 16nj = #blocksB with |S ∩ B| = j (j = 2, 4, 6, 8).
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i

)
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Assume that every pair of blocks interset at even number of points.
Let C ⊂ F

72
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ has minimal weight inx + C, S = supp(x) 6= block =⇒

|S ∩ B| : even and≤ 8.

S |B| = 16nj = #blocksB with |S ∩ B| = j (j = 2, 4, 6, 8).

∑
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(
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)

nj =
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i

)

λi (i = 1, 2, 3, 4, 5).

4 unknownsn2, n4, n6, n8; 5 equations=⇒ a contradiction.=⇒
C = C⊥ andS is a block. (Harada–Kitazume–M., 2004).

Spherical designs and extremal lattices – p.5/20



5-(72, 16, λ) design
Assume that every pair of blocks interset at even number of points.
Let C ⊂ F

72
2 be the binary code generated by its incidence matrix.

x ∈ C⊥ has minimal weight inx + C, S = supp(x) 6= block =⇒

|S ∩ B| : even and≤ 8.

S |B| = 16nj = #blocksB with |S ∩ B| = j (j = 2, 4, 6, 8).

∑

j=2,4,6,8

(

j

i

)

nj =

(|S|
i

)

λi (i = 1, 2, 3, 4, 5).

4 unknownsn2, n4, n6, n8; 5 equations=⇒ a contradiction.=⇒
C = C⊥ andS is a block. (Harada–Kitazume–M., 2004).

In particular,λ = 78.
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Spherical analogue
t-design spherical2t-design

binary self-orthogonal code integral lattice

binary self-dual code unimodular lattice

Assmus–Mattson theorem Venkov’s theorem

extended binary Golay code Leech lattice

S(5, 8, 24) 10-design inR
24

extended binary quadratic residue extremal lattice inR
48

code of length48

self-orthogonal5-(48, 12, 8) design spherical10-design inR
48

self-orthogonal5-(72, 16, 78) design spherical10-design inR
72

Spherical designs and extremal lattices – p.6/20



Spherical analogue
A sphericalt-designX is a finite subset of the sphereSn−1(µ) ⊂ R

n

of radius
√

µ s.t.

1

|X|
∑

x∈X

f(x) =

∫

Sn−1(µ)
fdx

∫

Sn−1(µ)
1dx

holds for any polynomialf(x) of degree≤ t.
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A sphericalt-designX is a finite subset of the sphereSn−1(µ) ⊂ R
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√

µ s.t.

1

|X|
∑

x∈X

f(x) =

∫

Sn−1(µ)
fdx

∫

Sn−1(µ)
1dx

holds for any polynomialf(x) of degree≤ t. This is analogous to
the definition of at-(v, k, λ) design:
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Spherical analogue
A sphericalt-designX is a finite subset of the sphereSn−1(µ) ⊂ R

n

of radius
√

µ s.t.

1

|X|
∑

x∈X

f(x) =

∫

Sn−1(µ)
fdx

∫

Sn−1(µ)
1dx

holds for any polynomialf(x) of degree≤ t. This is analogous to
the definition of at-(v, k, λ) design:

1

b

∑

B: block

fT (B) =

∑

|B|=k fT (B)
(

v
k

) =

(

k
t

)

(

v
t

)

for ∀ t-element setT , where

fT (B) =

{

1 if T ⊂ B,

0 otherwise. Spherical designs and extremal lattices – p.7/20



Lattice
To impose a condition analogous to self-orthogonality, we introduce
lattices.
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To impose a condition analogous to self-orthogonality, we introduce
lattices.

• A lattice is aZ-submodule ofRn of rankn containing a basis of
R

n.
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Lattice
To impose a condition analogous to self-orthogonality, we introduce
lattices.

• A lattice is aZ-submodule ofRn of rankn containing a basis of
R

n.
• A latticeΛ is calledintegralif ∀x, y ∈ Λ, (x, y) ∈ Z.
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Lattice
To impose a condition analogous to self-orthogonality, we introduce
lattices.

• A lattice is aZ-submodule ofRn of rankn containing a basis of
R

n.
• A latticeΛ is calledintegralif ∀x, y ∈ Λ, (x, y) ∈ Z.
• Thedual latticeΛ∗ of an integral latticeΛ is

Λ∗ = {x ∈ R
n | (x, y) ∈ Z ∀y ∈ Λ}⊃ Λ.

Spherical designs and extremal lattices – p.8/20



Lattice
To impose a condition analogous to self-orthogonality, we introduce
lattices.

• A lattice is aZ-submodule ofRn of rankn containing a basis of
R

n.
• A latticeΛ is calledintegralif ∀x, y ∈ Λ, (x, y) ∈ Z.
• Thedual latticeΛ∗ of an integral latticeΛ is

Λ∗ = {x ∈ R
n | (x, y) ∈ Z ∀y ∈ Λ}⊃ Λ.

and|Λ∗ : Λ| < ∞.
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Lattice
To impose a condition analogous to self-orthogonality, we introduce
lattices.

• A lattice is aZ-submodule ofRn of rankn containing a basis of
R

n.
• A latticeΛ is calledintegralif ∀x, y ∈ Λ, (x, y) ∈ Z.
• Thedual latticeΛ∗ of an integral latticeΛ is

Λ∗ = {x ∈ R
n | (x, y) ∈ Z ∀y ∈ Λ}⊃ Λ.

and|Λ∗ : Λ| < ∞.
• An integral latticeΛ is calledevenif (x, x) ∈ 2Z ∀x ∈ Λ.
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Lattice
To impose a condition analogous to self-orthogonality, we introduce
lattices.

• A lattice is aZ-submodule ofRn of rankn containing a basis of
R

n.
• A latticeΛ is calledintegralif ∀x, y ∈ Λ, (x, y) ∈ Z.
• Thedual latticeΛ∗ of an integral latticeΛ is

Λ∗ = {x ∈ R
n | (x, y) ∈ Z ∀y ∈ Λ}⊃ Λ.

and|Λ∗ : Λ| < ∞.
• An integral latticeΛ is calledevenif (x, x) ∈ 2Z ∀x ∈ Λ.
• An integral latticeΛ is calledunimodularif Λ = Λ∗.
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Assmus–Mattson theorem and
Venkov’s theorem

Theorem (Assmus–Mattson, 1969). LetC be a doubly even self-dual
binary code of length24m with minimum weight4m + 4. Then the set
of codewords of a fixed weight supports a5-design.
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Assmus–Mattson theorem and
Venkov’s theorem

Theorem (Assmus–Mattson, 1969). LetC be a doubly even self-dual
binary code of length24m with minimum weight4m + 4. Then the set
of codewords of a fixed weight supports a5-design.

Theorem (Venkov, 1984). LetΛ be a even unimodular integral lattice
of rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.
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Assmus–Mattson theorem and
Venkov’s theorem

Theorem (Assmus–Mattson, 1969). LetC be a doubly even self-dual
binary code of length24m with minimum weight4m + 4. Then the set
of codewords of a fixed weight supports a5-design.

Theorem (Venkov, 1984). LetΛ be a even unimodular integral lattice
of rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.

The values4m + 4, 2m + 2 are maximal possible ones.

Codes and lattices satisfying the condition of these theorems are called

extremal.
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Converse of Assmus–Mattson
theorem

Theorem (Assmus–Mattson). LetC be a doubly even self-dual
binary code of length24m with minimum weight4m + 4. Then the set
of codewords of a fixed weight supports a5-design.
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Converse of Assmus–Mattson
theorem

Theorem (Assmus–Mattson). LetC be a doubly even self-dual
binary code of length24m with minimum weight4m + 4. Then the set
of codewords of a fixed weight supports a5-design.

Form = 1, 2, 3, we have seen that every self-orthogonal
5-(24m, 4m + 4, λ) design coincides with the set of codewords of
minimum weight in a doubly even self-dual binary code of length
24m.
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Converse of Assmus–Mattson
theorem

Theorem (Assmus–Mattson). LetC be a doubly even self-dual
binary code of length24m with minimum weight4m + 4. Then the set
of codewords of a fixed weight supports a5-design.

Form = 1, 2, 3, we have seen that every self-orthogonal
5-(24m, 4m + 4, λ) design coincides with the set of codewords of
minimum weight in a doubly even self-dual binary code of length
24m.

M. Harada has shown a similar statement form = 4 with an appropriate

assumption on the value ofλ.
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Converse of Venkov’s theorem
Theorem (Venkov). LetΛ be a even unimodular integral lattice of
rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.
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Converse of Venkov’s theorem
Theorem (Venkov). LetΛ be a even unimodular integral lattice of
rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.

Form = 1, 2, 3, we will see that every spherical10-designX with
X = −X, in R

24m, of norm2m + 2, such that the values of mutual
inner products are integers, coincides with the set of vectors of norm
2m + 2 of an even unimodular lattice of rank24m with minimum
norm2m + 2.
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Converse of Venkov’s theorem
Theorem (Venkov). LetΛ be a even unimodular integral lattice of
rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.

Form = 1, 2, 3, we will see that every spherical10-designX with
X = −X, in R

24m, of norm2m + 2, such that the values of mutual
inner products are integers, coincides with the set of vectors of norm
2m + 2 of an even unimodular lattice of rank24m with minimum
norm2m + 2.

For m = 1, this result implies the characterization of the kissing con-

figuration inR
24 by Bannai–Sloane (1981).
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Converse of Venkov’s theorem
Let X be a spherical2t-design in the sphereSn−1(µ) ⊂ R

n, with
X = −X, such that the values of mutual inner products are integers.
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Converse of Venkov’s theorem
Let X be a spherical2t-design in the sphereSn−1(µ) ⊂ R

n, with
X = −X, such that the values of mutual inner products are integers.
Let fi(x) = (α, x)2i = (

∑n
i=1 αixi)

2i ∈ R[x1, . . . , xn], whereα ∈ R
n.
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Converse of Venkov’s theorem
Let X be a spherical2t-design in the sphereSn−1(µ) ⊂ R

n, with
X = −X, such that the values of mutual inner products are integers.
Let fi(x) = (α, x)2i = (

∑n
i=1 αixi)

2i ∈ R[x1, . . . , xn], whereα ∈ R
n.

Then fori = 1, . . . , t,
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Converse of Venkov’s theorem
Let X be a spherical2t-design in the sphereSn−1(µ) ⊂ R

n, with
X = −X, such that the values of mutual inner products are integers.
Let fi(x) = (α, x)2i = (

∑n
i=1 αixi)

2i ∈ R[x1, . . . , xn], whereα ∈ R
n.

Then fori = 1, . . . , t,

1

|X|
∑

x∈X

fi(x) =

∫

Sn−1(µ)
fidx

∫

Sn−1(µ)
1dx

.
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Converse of Venkov’s theorem
Let X be a spherical2t-design in the sphereSn−1(µ) ⊂ R

n, with
X = −X, such that the values of mutual inner products are integers.
Let fi(x) = (α, x)2i = (

∑n
i=1 αixi)

2i ∈ R[x1, . . . , xn], whereα ∈ R
n.

Then fori = 1, . . . , t,

1

|X|
∑

x∈X

(α, x)2i =
1

|X|
∑

x∈X

fi(x) =

∫

Sn−1(µ)
fidx

∫

Sn−1(µ)
1dx

=
(2i − 1)!!(‖α‖2µ)i

n(n + 2) · · · (n + 2i − 2)
.
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Converse of Venkov’s theorem
If X = −X ⊂ Sn−1(µ) is a spherical2t-design generating an integral
latticeΛ, then
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Converse of Venkov’s theorem
If X = −X ⊂ Sn−1(µ) is a spherical2t-design generating an integral
latticeΛ, then

1

|X|
∑

x∈X

(α, x)2i =
(2i − 1)!!(‖α‖2µ)i

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.
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Converse of Venkov’s theorem
If X = −X ⊂ Sn−1(µ) is a spherical2t-design generating an integral
latticeΛ, then

1

|X|
∑

x∈X

(α, x)2i =
(2i − 1)!!(‖α‖2µ)i

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.

If one takesα ∈ Λ∗, then(α, x) ∈ Z for all x ∈ X.
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Converse of Venkov’s theorem
If X = −X ⊂ Sn−1(µ) is a spherical2t-design generating an integral
latticeΛ, then

1

|X|
∑

x∈X

(α, x)2i =
(2i − 1)!!(‖α‖2µ)i

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.

If one takesα ∈ Λ∗, then(α, x) ∈ Z for all x ∈ X. Putting

nj = #vectorsx ∈ X with (α, x) = ±j,

we have
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Converse of Venkov’s theorem
If X = −X ⊂ Sn−1(µ) is a spherical2t-design generating an integral
latticeΛ, then

1

|X|
∑

x∈X

(α, x)2i =
(2i − 1)!!(‖α‖2µ)i

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.

If one takesα ∈ Λ∗, then(α, x) ∈ Z for all x ∈ X. Putting

nj = #vectorsx ∈ X with (α, x) = ±j,

we have
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Converse of Venkov’s theorem
If X = −X ⊂ Sn−1(µ) is a spherical2t-design generating an integral
latticeΛ, then

1

|X|
∑

x∈X

(α, x)2i =
(2i − 1)!!(‖α‖2µ)i

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.

If one takesα ∈ Λ∗, then(α, x) ∈ Z for all x ∈ X. Putting

nj = #vectorsx ∈ X with (α, x) = ±j,

we have

∞
∑

j=1

j2inj =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.
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Converse of Venkov’s theorem
If X = −X ⊂ Sn−1(µ) is a spherical2t-design generating an integral
latticeΛ, then

1

|X|
∑

x∈X

(α, x)2i =
(2i − 1)!!(‖α‖2µ)i

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.

If one takesα ∈ Λ∗, then(α, x) ∈ Z for all x ∈ X. Putting

nj = #vectorsx ∈ X with (α, x) = ±j,

we have

∞
∑

j=1

j2inj =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , t.

There are infinitely many unknowns, while there aret equations.
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X,
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)

≥− (β, β) = −µ,
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)

≥ −(β, β) = −µ,

2(α, β) = −(α − β, α − β) + (α, α) + (β, β)
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)

≥ −(β, β) = −µ,

2(α, β) = −(α − β, α − β) + (α, α) + (β, β)

≤(β, β) = µ.
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)

≥ −(β, β) = −µ,

2(α, β) = −(α − β, α − β) + (α, α) + (β, β)

≤(β, β) = µ.
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)

≥ −(β, β) = −µ,

2(α, β) = −(α − β, α − β) + (α, α) + (β, β)

≤(β, β) = µ.

[µ/2]
∑

j=1

j2inj =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)

≥ −(β, β) = −µ,

2(α, β) = −(α − β, α − β) + (α, α) + (β, β)

≤(β, β) = µ.

[µ/2]
∑

j=1

j2inj =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].

There are[µ/2] unknownsn1, . . . , n[µ/2]; [t/2] equations.
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Converse of Venkov’s theorem
Assumeα ∈ Λ∗ has minimal norm inα + Λ andα /∈ X, then for
β ∈ X,

2(α, β) = (α + β, α + β) − (α, α) − (β, β)

≥ −(β, β) = −µ,

2(α, β) = −(α − β, α − β) + (α, α) + (β, β)

≤(β, β) = µ.

[µ/2]
∑

j=1

j2inj =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].

There are[µ/2] unknownsn1, . . . , n[µ/2]; [t/2] equations.

Consistency condition is derived whent = 10, µ = 4, 6, 8 (rank

24, 48, 72, respectively).
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Converse of Venkov’s theorem
Theorem (Venkov). LetΛ be a even unimodular integral lattice of
rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.
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Converse of Venkov’s theorem
Theorem (Venkov). LetΛ be a even unimodular integral lattice of
rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.

Form = 1, 2, 3, every spherical10-designX with X = −X, in R
24m,

of norm2m + 2, such that the values of mutual inner products are
integers, coincides with the set of vectors of norm2m + 2 of an even
unimodular lattice of rank24m with minimum norm2m + 2.
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Converse of Venkov’s theorem
Theorem (Venkov). LetΛ be a even unimodular integral lattice of
rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.

Form = 1, 2, 3, every spherical10-designX with X = −X, in R
24m,

of norm2m + 2, such that the values of mutual inner products are
integers, coincides with the set of vectors of norm2m + 2 of an even
unimodular lattice of rank24m with minimum norm2m + 2.

Form = 1, this result gives a simple proof the following.
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Converse of Venkov’s theorem
Theorem (Venkov). LetΛ be a even unimodular integral lattice of
rank24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a spherical10-design.

Form = 1, 2, 3, every spherical10-designX with X = −X, in R
24m,

of norm2m + 2, such that the values of mutual inner products are
integers, coincides with the set of vectors of norm2m + 2 of an even
unimodular lattice of rank24m with minimum norm2m + 2.

Form = 1, this result gives a simple proof the following.

Theorem (Bannai–Sloane, 1981). The set of196, 560 shortest vectors
of the Leech lattice is the unique kissing configuration inR

24.
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
Suppose[t/2] ≥ [µ/2] + 1.
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
Suppose[t/2] ≥ [µ/2] + 1.
If α ∈ Λ∗ is minimal inα + Λ andα /∈ X, then we obtain a
consistency condition.
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
Suppose[t/2] ≥ [µ/2] + 1.
If α ∈ Λ∗ is minimal inα + Λ andα /∈ X, then we obtain a
consistency condition.
If there is no suchα, i.e., if X coincides with the set of the shortest
vectors of a unimodular latticeΛ, then we get a different system of
linear equations by takingα ∈ X:
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
Suppose[t/2] ≥ [µ/2] + 1.
If α ∈ Λ∗ is minimal inα + Λ andα /∈ X, then we obtain a
consistency condition.
If there is no suchα, i.e., if X coincides with the set of the shortest
vectors of a unimodular latticeΛ, then we get a different system of
linear equations by takingα ∈ X:

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
(i = 1, . . . , [t/2]).
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
Suppose[t/2] ≥ [µ/2] + 1.
If α ∈ Λ∗ is minimal inα + Λ andα /∈ X, then we obtain a
consistency condition.
If there is no suchα, i.e., if X coincides with the set of the shortest
vectors of a unimodular latticeΛ, then we get a different system of
linear equations by takingα ∈ X:

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
(i = 1, . . . , [t/2]).
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
Suppose[t/2] ≥ [µ/2] + 1.
If α ∈ Λ∗ is minimal inα + Λ andα /∈ X, then we obtain a
consistency condition.
If there is no suchα, i.e., if X coincides with the set of the shortest
vectors of a unimodular latticeΛ, then we get a different system of
linear equations by takingα ∈ X:

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
(i = 1, . . . , [t/2]).

(α, α)2i+(α,−α)2i = 2µ2i = µ2inµ
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Spherical designs and lattices
In what follows, letX = −X ⊂ Sn−1(µ) be a sphericalt-design
generating an integral latticeΛ.
Suppose[t/2] ≥ [µ/2] + 1.
If α ∈ Λ∗ is minimal inα + Λ andα /∈ X, then we obtain a
consistency condition.
If there is no suchα, i.e., if X coincides with the set of the shortest
vectors of a unimodular latticeΛ, then we get a different system of
linear equations by takingα ∈ X:

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
(i = 1, . . . , [t/2]).

which also gives a consistency condition.
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The unimodular case
If X coincides with the set of the shortest vectors of a unimodular
latticeΛ, then
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The unimodular case
If X coincides with the set of the shortest vectors of a unimodular
latticeΛ, then

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].
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The unimodular case
If X coincides with the set of the shortest vectors of a unimodular
latticeΛ, then

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].

• (t, µ) = (4, 2) =⇒ X = E8,
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The unimodular case
If X coincides with the set of the shortest vectors of a unimodular
latticeΛ, then

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].

• (t, µ) = (4, 2) =⇒ X = E8,

• (t, µ) = (4, 3) =⇒ |X| =
16n(n + 2)

25 − n
, in particular,n ≤ 24,
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The unimodular case
If X coincides with the set of the shortest vectors of a unimodular
latticeΛ, then

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].

• (t, µ) = (4, 2) =⇒ X = E8,

• (t, µ) = (4, 3) =⇒ |X| =
16n(n + 2)

25 − n
, in particular,n ≤ 24,

• (t, µ) = (6, 4) =⇒ |X| =
90n(n + 2)(n + 4)

(n − 26)(n − 28)
, n is bounded.

Spherical designs and extremal lattices – p.17/20



The unimodular case
If X coincides with the set of the shortest vectors of a unimodular
latticeΛ, then

[µ/2]
∑

j=1

j2inj + 2µ2i =
(2i − 1)!!(‖α‖2µ)i|X|

n(n + 2) · · · (n + 2i − 2)
i = 1, . . . , [t/2].

• (t, µ) = (4, 2) =⇒ X = E8,

• (t, µ) = (4, 3) =⇒ |X| =
16n(n + 2)

25 − n
, in particular,n ≤ 24,

• (t, µ) = (6, 4) =⇒ |X| =
90n(n + 2)(n + 4)

(n − 26)(n − 28)
, n is bounded.

Moreover,[µ/2] + 1 ≤ [t/2] ≤ 10 andt ≤ 10 =⇒ n is bounded.
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Binary analogue
Let C ⊂ F

v
2 be the binary code generated by the incidence matrix of a

self-orthogonalt-(v, k, λ) design.
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Binary analogue
Let C ⊂ F

v
2 be the binary code generated by the incidence matrix of a

self-orthogonalt-(v, k, λ) design.
Pickx ∈ C⊥ minimal inx + C, and assumeS = supp(x) is not a
block. Then
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Binary analogue
Let C ⊂ F

v
2 be the binary code generated by the incidence matrix of a

self-orthogonalt-(v, k, λ) design.
Pickx ∈ C⊥ minimal inx + C, and assumeS = supp(x) is not a
block. Then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj =

(|S|
i

)

λi (i = 1, . . . , t).
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Binary analogue
Let C ⊂ F

v
2 be the binary code generated by the incidence matrix of a

self-orthogonalt-(v, k, λ) design.
Pickx ∈ C⊥ minimal inx + C, and assumeS = supp(x) is not a
block. Then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj =

(|S|
i

)

λi (i = 1, . . . , t).

There are[k/4] unknowns,t equations.
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Binary analogue
Let C ⊂ F

v
2 be the binary code generated by the incidence matrix of a

self-orthogonalt-(v, k, λ) design.
Pickx ∈ C⊥ minimal inx + C, and assumeS = supp(x) is not a
block. Then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj =

(|S|
i

)

λi (i = 1, . . . , t).

There are[k/4] unknowns,t equations.

A consistency condition is derived when

t ≥ [k/4] + 1.
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Binary analogue
In what follows, letC ⊂ F

v
2 be the binary code generated by the

incidence matrix of a self-orthogonalt-(v, k, λ) design, where
t ≥ [k/4] + 1.
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Binary analogue
In what follows, letC ⊂ F

v
2 be the binary code generated by the

incidence matrix of a self-orthogonalt-(v, k, λ) design, where
t ≥ [k/4] + 1.
If x ∈ C⊥ has minimal weight inx + C andS = supp(x) is not a
block, then we obtain a consistency condition.
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Binary analogue
In what follows, letC ⊂ F

v
2 be the binary code generated by the

incidence matrix of a self-orthogonalt-(v, k, λ) design, where
t ≥ [k/4] + 1.
If x ∈ C⊥ has minimal weight inx + C andS = supp(x) is not a
block, then we obtain a consistency condition.
If there is no suchx, i.e., if the blocks are just the minimum weight
codewords of a self-dual codeC, then we get a different system of
linear equations by takingS to be a block:
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Binary analogue
In what follows, letC ⊂ F

v
2 be the binary code generated by the

incidence matrix of a self-orthogonalt-(v, k, λ) design, where
t ≥ [k/4] + 1.
If x ∈ C⊥ has minimal weight inx + C andS = supp(x) is not a
block, then we obtain a consistency condition.
If there is no suchx, i.e., if the blocks are just the minimum weight
codewords of a self-dual codeC, then we get a different system of
linear equations by takingS to be a block:

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi i = 1, . . . , t.
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Binary analogue
In what follows, letC ⊂ F

v
2 be the binary code generated by the

incidence matrix of a self-orthogonalt-(v, k, λ) design, where
t ≥ [k/4] + 1.
If x ∈ C⊥ has minimal weight inx + C andS = supp(x) is not a
block, then we obtain a consistency condition.
If there is no suchx, i.e., if the blocks are just the minimum weight
codewords of a self-dual codeC, then we get a different system of
linear equations by takingS to be a block:

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi i = 1, . . . , t.

S = B
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Binary analogue
In what follows, letC ⊂ F

v
2 be the binary code generated by the

incidence matrix of a self-orthogonalt-(v, k, λ) design, where
t ≥ [k/4] + 1.
If x ∈ C⊥ has minimal weight inx + C andS = supp(x) is not a
block, then we obtain a consistency condition.
If there is no suchx, i.e., if the blocks are just the minimum weight
codewords of a self-dual codeC, then we get a different system of
linear equations by takingS to be a block:

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi (i = 1, . . . , t).

which also gives a consistency condition.
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Binary analogue
If the set of blocks coincides with the set of minimal weight vectors of
a self-dual code, then
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Binary analogue
If the set of blocks coincides with the set of minimal weight vectors of
a self-dual code, then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi (i = 1, . . . , t).
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Binary analogue
If the set of blocks coincides with the set of minimal weight vectors of
a self-dual code, then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi (i = 1, . . . , t).

• (t, k) = (2, 4) =⇒ λ =
6

10 − v
,
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Binary analogue
If the set of blocks coincides with the set of minimal weight vectors of
a self-dual code, then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi (i = 1, . . . , t).

• (t, k) = (2, 4) =⇒ λ =
6

10 − v
,

• (t, k) = (2, 6) =⇒ λ =
20

26 − v
,

Spherical designs and extremal lattices – p.20/20



Binary analogue
If the set of blocks coincides with the set of minimal weight vectors of
a self-dual code, then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi (i = 1, . . . , t).

• (t, k) = (2, 4) =⇒ λ =
6

10 − v
,

• (t, k) = (2, 6) =⇒ λ =
20

26 − v
,

• (t, k) = (3, 8) =⇒ λ =
336

v2 − 52v + 688
=⇒ v is bounded.
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Binary analogue
If the set of blocks coincides with the set of minimal weight vectors of
a self-dual code, then

∑

j=2,4,...,2[k/4]

(

j

i

)

nj +

(

k

i

)

=

(|S|
i

)

λi (i = 1, . . . , t).

• (t, k) = (2, 4) =⇒ λ =
6

10 − v
,

• (t, k) = (2, 6) =⇒ λ =
20

26 − v
,

• (t, k) = (3, 8) =⇒ λ =
336

v2 − 52v + 688
=⇒ v is bounded.

• for eacht, k with t = [k/4] + 1, v is bounded.Only finitely many
(t, k, v)?
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