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Let C' C F2* be the binary code generated by its incidence matrix.
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Let C' C F2* be the binary code generated by its incidence matrix.
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x € C- = |S N B|: evenforvblock B, whereS = supp(z).

n; = #blocksBwith |SN B| =7 (j = 2,4,6,8).
S |B| =8

<>

Counting# (1, B) with I € (°77),
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Let C' C F2* be the binary code generated by its incidence matrix.

x € C- = |S N B|: evenforvblock B, whereS = supp(z).
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Let C' C F2* be the binary code generated by its incidence matrix.

x € C- = |S N B|: evenforvblock B, whereS = supp(z).

n; = #blocksBwith |SN B| =7 (j = 2,4,6,8).
S |B| =8

<>
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S(5,8,24)
Let C' C F2* be the binary code generated by its incidence matrix.

x € C- = |S N B|: evenforvblock B, whereS = supp(z).

n; = #blocksBwith |SN B| =7 (j = 2,4,6,8).
S |B| =8

<>

Counting# (1, B) with I € (°77),

' S
7=2,4,6,8 ¢ ¢

4 unknownsny, n4, ng, ng. 5 equations—-

[S1(15] = 8)(IS] = 12)(|S| = 16)(|5]| — 24) = 0.
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Assume that every pair of blocks interset at even number iotg0
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by its incidence matrix.
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Assume that every pair of blocks interset at even number iotg0

Let C' C FF3® be the binary (C c C+) code generated
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x € C' has minimal weight inc + C', S = supp(x)# block —=-

.S N B|: even and 6.
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Assume that every pair of blocks interset at even number iotg0

Let C' C FF3® be the binary (C c C+) code generated
by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block —=-
men anck 6.

S |B] =12

n; = #blocksBwith |SNB| =7 (j =2,4,6). (.)
S (y)nj _ (‘S‘)Ai (i =1,2,3,4,5).
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5-(48,12, A) design

Assume that every pair of blocks interset at even number iotg0

Let C' C FF3® be the binary (C c C+) code generated
by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block —=-
men anck 6.
S  |B] =12

n; = #blocksBwith |SNB| =7 (j =2,4,6). (.)
S (y)nj _ (‘S‘)Ai (i =1,2,3,4,5).
12 (

j=2.4.6

3 unknownsnsy, n4, ng;, 5 equations —- a contradiction. —
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5-(48,12, A) design

Assume that every pair of blocks interset at even number iotg0

Let C' C FF3® be the binary (C c C+) code generated
by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block —=-
.S N B|: even and 6.

S |B] =12

n; = #blocksBwith |SNB| =7 (j = 2,4,6). (.)

j=2.4.6 0/

3 unknownsnsy,n4,ng;, 5 equations —- a contradiction. —
C' = C+ andS is a block.
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5-(48,12, A) design

Let C' C F3® be the binary self-orthogonal code generated by its
Incidence matrix.
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* (' hasl17296 codewords of weight2 by self-duality.
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Let C' C F3® be the binary self-orthogonal code generated by its
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e C =C,

* (' has minimum weight 2,

* (' hasl17296 codewords of weight2 by self-duality.

* the codewords of weight2 are the blocks of the design. In
particular,A = 8.
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Let C' C F3® be the binary self-orthogonal code generated by its
Incidence matrix. Then' satisfies
e C =C,
* (' has minimum weight 2,
* (' hasl17296 codewords of weight2 by self-duality.
* the codewords of weight2 are the blocks of the design. In
particular,\ = 8.

The uniqueness of this design follows from the uniquenessici a
code(Houghten—Lam-Thiel-Parker, 2003)
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5-(48,12, A) design

Let C' C F3® be the binary self-orthogonal code generated by its
Incidence matrix. Then' satisfies

e O =(C,
* (' has minimum weight 2,

* (' hasl17296 codewords of weight2 by self-duality.

* the codewords of weight2 are the blocks of the design. In
particular,A = 8.

The uniqueness of this design follows from the uniquenessici a
code(Houghten—Lam-Thiel-Parker, 2003)

A quasi-symmetric2-(45,9,8) design is also uniquéHarada—M.—
Tonchey, 2005)
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Assume that every pair of blocks interset at even number iotg0
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Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.
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Let C' C Fi? be the binary code generated by its incidence matrix.

x € C' has minimal weight inc + C', S = supp(x)# block—=-
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Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.

x € C' has minimal weight inc + C', S = supp(x)# block—=-

S N B|: evenand 8.
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Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block —=-
men anck 8.
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Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block —=-
men anck 8.
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Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block —=-
men anck 8.

S (= (T a-r2sas)
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Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.
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men anck 8.

S (= (T a-r2sas)
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Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block —=-
men anck 8.

S (= (T a-r2sas)

j=2.4.6,8

4 unknownsn,, n4, ng, ng; 5 equations—-  a contradiction.—
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5-(72,16, \) design

Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block =
S N B|: even and 8.

= #blocksBwith [SNB| =7 (1 =2,4,6,8). ¢ |p| =16

> (}nj_(’SDZ (i:1,2,3,4§..)

j=2,4,6,8

4 unknownsn,, n4, ng, ng; 5 equations—-  a contradiction.—
C = C+ andS is a block. (Harada—Kitazume—M., 2004).

Spherical designs and extremal lattices — p



5-(72,16, \) design

Assume that every pair of blocks interset at even number iotg0
Let C' C Fi? be the binary code generated by its incidence matrix.

x € C'{ has minimal weight inc + C', S = supp(x)# block =
S N B|: even and 8.

= #tblocksBwith |SNB| =5~ (j =2,4,6,8). ¢ |B| =16

> (}nj_(’soz (i:1,2,3,4§..)

j=2,4,6,8

4 unknownsn,, n4, ng, ng; 5 equations—-  a contradiction.—
C = C+ andS is a block. (Harada—Kitazume—M., 2004).

In particular,\ = 78.
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Spherical analogue

-design sphericai/-design
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Spherical analogue

-design sphericdl/-design
binary self-orthogonal code Integral lattice
binary self-dual code unimodular lattice
Assmus—Mattson theorem Venkov’s theorem
extended binary Golay code Leech lattice
S(5,8,24) -design inR**
extended binary quadratic residue extremal lattic®‘h

code of lengtht&
self-orthogonai -(48, 12, 8) design  spherical -design inR*®
self-orthogonai-(72, 16, 78) design spherical -design inR™

Spherical designs and extremal lattices — p



Spherical analogue

A spherical -designX is a finite subset of the sphef&—!(u) C R”
of radius,/u S.t.

1 Jon-14 fd
S 2. f@) =
|41 reX fS”‘l(u) e

holds for any polynomiaf (x) of degree< /.
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A spherical -designX is a finite subset of the sphef&—!(u) C R”
of radius,/u S.t.

1 Jon-14 fd
S 2. f@) =
|41 reX fS”‘l(u) e

holds for any polynomiaf (x) of degree< /.  This is analogous to
the definition of a-(v, k, \) design:
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Spherical analogue

A spherical -designX is a finite subset of the sphef&—! () C R"
of radius,/u S.t.

1 Jon-14 fd
S 2. f@) =
|41 reX fS”‘l(u) e

holds for any polynomiaf (x) of degree< /.  This is analogous to
the definition of a-(v, k, \) design:

forV '-element sef’, where

£o(B) = {1 if T C B,

1 Spherical desi d ext | lattices —
O OtherWISe pherical designs and extremal lattices — p



Lattice

To impose a condition analogous to self-orthogonality, misoduce
lattices.
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Lattice

To impose a condition analogous to self-orthogonality, misoduce
lattices.

* A lattice is aZ-submodule oR™ of rankn containing a basis of

R™.
* Alattice A is called if Ve,y € A, (z,y) € Z.
* The A* of an integral lattice\ is

N ={xeR"|(z,y) € ZVy € A}D A.
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Lattice

To impose a condition analogous to self-orthogonality, misoduce
lattices.

* A lattice is aZ-submodule oR™ of rankn containing a basis of

R™.
* Alattice A is called if Ve,y € A, (z,y) € Z.
* The A* of an integral lattice\ is

N ={xeR"|(z,y) € ZVy € A}D A.

and|A* : Al < 0.

Spherical designs and extremal lattices — p



Lattice

To impose a condition analogous to self-orthogonality, misoduce
lattices.

* A lattice is aZ-submodule oR™ of rankn containing a basis of

R™.
* Alattice A is called if Ve,y € A, (z,y) € Z.
* The A* of an integral lattice\ is

N ={xeR"|(z,y) € ZVy € A}D A.

and|A* : Al < 0.
* An integral latticeA is called if (x,x) € 2ZVx € A.
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Lattice

To impose a condition analogous to self-orthogonality, misoduce
lattices.

* A lattice is aZ-submodule oR™ of rankn containing a basis of

R™.
* Alattice A is called if Ve,y € A, (z,y) € Z.
* The A* of an integral lattice\ is

N ={xeR"|(z,y) € ZVy € A}D A.

and|A* : Al < 0.
* An integral latticeA is called if (x,x) € 2ZVx € A.
* An integral latticeA is called If A = A",
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ASSmMus—vViattson theorem and
Venkov’s theorem

Theorem (Assmus—Mattson, 1969) Let C' be a doubly even self-dual
binary code of lengtl24m with minimum weight . Then the set
of codewords of a fixed weight supports-design.
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ASSmMus—vViattson theorem and
Venkov’s theorem

Theorem (Assmus—Mattson, 1969) Let C' be a doubly even self-dual
binary code of lengtl24m with minimum weight . Then the set
of codewords of a fixed weight supports-design.

Theorem (Venkov, 1984) Let A be a even unimodular integral lattice
of rank 24m with minimum norm . Then the set of vectors of a
fixed norm forms a spherical-design.
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ASSmMus—vViattson theorem and
Venkov’s theorem

Theorem (Assmus—Mattson, 1969) Let C' be a doubly even self-dual
binary code of lengtl24m with minimum weight . Then the set
of codewords of a fixed weight supports-design.

Theorem (Venkov, 1984) Let A be a even unimodular integral lattice
of rank 24m with minimum norm . Then the set of vectors of a
fixed norm forms a spherical-design.

The values are maximal possible ones.

Codes and lattices satisfying the condition of these thmsrare called
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converse 01 Assmus—iVvattson
theorem

Theorem (Assmus—Mattson) LetC be a doubly even self-dual
binary code of lengt24m with minimum weightm + 4. Then the set
of codewords of a fixed weight supports-design.
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converse 01 Assmus—iVvattson
theorem

Theorem (Assmus—Mattson) LetC be a doubly even self-dual
binary code of lengt24m with minimum weightm + 4. Then the set
of codewords of a fixed weight supports-design.

Form =1, 2, 3, we have seen that every self-orthogonal
5-(24m, 4m + 4, \) design coincides with the set of codewords of

minimum weight in a doubly even self-dual binary code of ling
24m.
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converse 01 Assmus—iVvattson
theorem

Theorem (Assmus—Mattson) LetC be a doubly even self-dual
binary code of lengt24m with minimum weightm + 4. Then the set
of codewords of a fixed weight supports-design.

Form =1, 2, 3, we have seen that every self-orthogonal
5-(24m, 4m + 4, \) design coincides with the set of codewords of

minimum weight in a doubly even self-dual binary code of ling
24m.

M. Harada has shown a similar statementfor= 4 with an appropriate

assumption on the value of
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Converse of Venkov’s theorem

Theorem (Venkov). Let A be a even unimodular integral lattice of
rank 24m with minimum norn2m + 2. Then the set of vectors of a
fixed norm forms a sphericab-design.
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Converse of Venkov’s theorem

Theorem (Venkov). Let A be a even unimodular integral lattice of
rank 24m with minimum norn2m + 2. Then the set of vectors of a
fixed norm forms a sphericab-design.

Form =1, 2, 3, we will see that every spherica)-designX with

X =-X,InR ", of norm2m + 2, such that the values of mutual
Inner products are integers, coincides with the set of vea@bnorm
2m + 2 of an even unimodaular lattice of rank /» with minimum
norm?2m + 2.
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Converse of Venkov’s theorem

Theorem (Venkov). Let A be a even unimodular integral lattice of
rank 24m with minimum norn2m + 2. Then the set of vectors of a
fixed norm forms a sphericab-design.

Form =1, 2, 3, we will see that every spherica)-designX with
X =-X,InR ", of norm2m + 2, such that the values of mutual
Inner products are integers, coincides with the set of vea@bnorm

2m + 2 of an even unimodular lattice of rank /»» with minimum
norm?22m -+ 2.

Form = 1, this result implies the characterization of the kissing-co

figuration INR- by Bannai—Sloane (1981)
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Converse of Venkov’s theorem

Let X be a sphericdlt-design in the spher&™~1(;) c R”, with
X = —X, such that the values of mutual inner products are integers.
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Converse of Venkov’s theorem

Let X be a sphericdlt-design in the spher&™~1(;) c R”, with
X = —X, such that the values of mutual inner products are integers.
Let fi(z) = (a,2)* = (D07, ayx;)® € Ray, ..., x,], wherea € R™.
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Converse of Venkov’s theorem

Let X be a sphericdlt-design in the spher&™~1(;) c R”, with
X = —X, such that the values of mutual inner products are integers.
Let fi(z) = (a,2)* = (D07, ayx;)® € Ray, ..., x,], wherea € R™.

Thenfori =1,...,¢,

Spherical designs and extremal lattices — p.



Converse of Venkov’s theorem

Let X be a sphericdlt-design in the spher&™~1(;) c R”, with
X = —X, such that the values of mutual inner products are integers.

Let fi(z) = (a,2)* = (D07, ayx;)® € Ray, ..., x,], wherea € R™.

Thenfori =1,...,¢,
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Converse of Venkov’s theorem

Let X be a sphericdlt-design in the spher&™~1(;) c R”, with
X = —X, such that the values of mutual inner products are integers.

Let fi(z) = (a,2)* = (D07, ayx;)® € Ray, ..., x,], wherea € R™.

Thenfori =1,...,¢,

1 2 A _ fS”‘l(u) fids
2@ = 5 D fila) = [T

reX reX
_ @i D(lafe)
n(n+2)- (n+2i—2)
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Converse of Venkov’s theorem

If X = —X c 5" !(u) is a spherica2t-design generating an integral
lattice A, then
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Converse of Venkov’s theorem

If X = —X c 5" !(u) is a spherica2t-design generating an integral
lattice A, then

1 2 (28 = DI(]Ja]]?p)’ .
WZ(a,x) = At (nt2i-2) i=1,...,t.
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Converse of Venkov’s theorem

If X = —X c 5" !(u) is a spherica2t-design generating an integral
lattice A, then

1 2 __ (20 — DU(lee][*p)
WZ(a,x) - nan+2)---(n+2i —2)

i=1,....t

If one takesy € A*, then(a,x) € Zforall z € X.
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Converse of Venkov’s theorem

If X = —X c 5" !(u) is a spherica2t-design generating an integral
lattice A, then

1 2 __ (20 — DU (lle*p)’
WZ(a,x) - nan+2)---(n+2i —2)

i=1,....t

If one takesy € A*, then(a,x) € Zforallz € X. Putting
n, = #vectorsz € X with (o, z) = £/,

we have
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Converse of Venkov’s theorem

If X = —X c 5" !(u) is a spherica2t-design generating an integral
lattice A, then

1 2 __ (20 — DU (lle*p)’
WZ(a,x) - nan+2)---(n+2i —2)

i=1,....t

If one takesy € A*, then(a,x) € Ztorallz € X. Putting
n, = #vectorsz € X with (o, z) = £/,

we have
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Converse of Venkov’s theorem

If X = —X c 5" !(u) is a spherica2t-design generating an integral
lattice A, then

1 2 __ (20 — DU (lle*p)’
WZ(a,x) - nan+2)---(n+2i —2)

i=1,....t

If one takesy € A*, then(a,x) € Ztorallz € X. Putting

n, = #vectorsz € X with (o, z) = £/,

Y 2 — 1) 20)4 X
S o0y - _GiZ DUl x|

n(n—|-2)---(n_|_2@’_2) .., L.
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Converse of Venkov’s theorem

If X = —X c 5" !(u) is a spherica2t-design generating an integral
lattice A, then

1 2 __ (20 — DU (lle*p)’
WZ(a,x) - nan+2)---(n+2i —2)

i=1,....t

If one takesy € A*, then(a,x) € Ztorallz € X. Putting
n, = #vectorsz € X with (o, z) = £/,

we have

Y 2 — 1) 20)4 X
S o0y - _GiZ DUl x|

n(n—|-2)---(n_|_2@’_2) .., L.

=1

There are infinitely many unknowns, while there asguations.
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Converse of Venkov’s theorem

Assumex € A* has minimal norm inv + A anda ¢ X,
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iv + A anda ¢ X, then for
geX,

2(a,B) = (a+ B,a+ F) — (o, a) — (5, 5)
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iy + A anda ¢ X, then for
geX,

2(a, B) = (@ + B, a0+ B) — (a,a) — (3, B)
> —(8,8) = —p,
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iv + A anda ¢ X, then for

BeX,
2(a, B) = (a+ B,a+ 8) — (a, ) — (5, 8)
> —(6,6) = —u,
2(a, 8) = —(a = B,a = B) + (o, ) + (8, B)
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iv + A anda ¢ X, then for
geX,

2(0, B) = (a+ B,a+ B8) — (a, ) — (8, 5)
(8,8) = —u,
—(a—B,a =)+ (o, ) + (8, 6)

) = k.

| AVAR
|

2(cv, B)

D

)

L/l
D
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iy + A anda ¢ X, then for
g e X,
2(a, B) = \a+ B, + B)/— (o, ) — (53, B)
2 —(8,8) = —f,
2(e, B) = —(a = f,a = f) + (o, a) + (5, 5)
<(6,8) = p.
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iv + A anda ¢ X, then for
geX,

2(0, B) = (a+ B,a+ B8) — (a, ) — (8, 5)
(8,8) = —
—(a—B,a = B) + (a, ) + (5, 5)

) = k.

|| AVARI
|

2(cv, B)

A
D
@

)

(20 — D)I(]|ee)|?0)| X

nn+2)---(n+ 2 —2)
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iv + A anda ¢ X, then for

e X,

2(a, B) = (a + B,a+ B) — (a,a) — (B, 5)
> —(8,8) = —u

2(a, B) = —(a = B,a = B) + (o, ) + (8, B)
<(8,8) =

(26 — 1)!! ‘1) X

nn+2)---(n+ 2 —2)

There are[u/z] unknownsny, ..., ny,/9; |t/2] equations.

Spherical designs and extremal lattices
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Converse of Venkov’s theorem

Assumex € A* has minimal norm iv + A anda ¢ X, then for
g e X,
2(a,B) = (a+ 6,0+ F) — (o, a) — (5, 5)
> —(8,8) =—
2(e, B) = —(a—f,a = ) + (o, a) + (8, 5)
<(8,8) =

(26 — 1)!! ‘1) X

nn+2)---(n+ 2 —2)

There are[u/Q] unknownsny, ..., ny,/9; |t/2] equations.
Consistency condition is derived wheén= 10, u = 4,6,8 (rank

24,48, 72, respectively).

Spherical designs and extremal lattices

[0,



Converse of Venkov’s theorem

Theorem (Venkov). Let A be a even unimodular integral lattice of
rank 24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a sphericab-design.
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Converse of Venkov’s theorem

Theorem (Venkov). Let A be a even unimodular integral lattice of
rank 24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a sphericab-design.

Form = 1,2, 3, every spherical0-designX with X = —X, in R*™,
of norm2m + 2, such that the values of mutual inner products are
Integers, coincides with the set of vectors of nam + 2 of an even
unimodular lattice of ranR4m with minimum norm2m + 2.

Spherical designs and extremal lattices — p.



Converse of Venkov’s theorem

Theorem (Venkov). Let A be a even unimodular integral lattice of
rank 24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a sphericab-design.

Form = 1,2, 3, every spherical0-designX with X = —X, in R*™,
of norm2m + 2, such that the values of mutual inner products are
Integers, coincides with the set of vectors of nam + 2 of an even
unimodular lattice of ranR4m with minimum norm2m + 2.

Form = 1, this result gives a simple proof the following.
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Converse of Venkov’s theorem

Theorem (Venkov). Let A be a even unimodular integral lattice of
rank 24m with minimum norm2m + 2. Then the set of vectors of a
fixed norm forms a sphericab-design.

Form = 1,2, 3, every spherical0-designX with X = —X, in R*™,
of norm2m + 2, such that the values of mutual inner products are
Integers, coincides with the set of vectors of nam + 2 of an even
unimodular lattice of ranR4m with minimum norm2m + 2.

Form = 1, this result gives a simple proof the following.

Theorem (Bannai—Sloane, 1981)The set ofl96, 560 shortest vectors
of the Leech lattice is the unique kissing configuratiofRf.
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Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.
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Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.
Suppose
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Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.

Suppose
If & € A* is minimal ina + A anda ¢ X, then we obtain a

consistency condition.
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Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.

Suppose

If & € A*is minimal ina + A anda ¢ X, then we obtain a
consistency condition.

If there Is no suchy, I.e., iIf X coincides with the set of the shortest
vectors of a unimodular lattick, then we get a different system of
linear equations by taking € X:
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Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.

Suppose

If & € A*is minimal ina + A anda ¢ X, then we obtain a
consistency condition.

If there Is no suchy, I.e., iIf X coincides with the set of the shortest
vectors of a unimodular lattick, then we get a different system of
linear equations by taking € X:

[12/2] . allZn)é
Z jQinj + 2u” = n((iz—l— 21))”(H(nH_|_M2)Z’i(‘2) (t=1,...,[t/2]).

g=1
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Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.

Suppose

If & € A*is minimal ina + A anda ¢ X, then we obtain a
consistency condition.

If there Is no suchy, I.e., iIf X coincides with the set of the shortest
vectors of a unimodular lattick, then we get a different system of
linear equations by taking € X:

(/2] - a2
Zj%nj 4+ 2M27; _ n((iz—i_ 21))"(“(n|’+u2)l‘i(‘2) (Z =1,.... [t/Q])

g=1

Spherical designs and extremal lattices — p.



Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.

Suppose

If & € A*is minimal ina + A anda ¢ X, then we obtain a
consistency condition.

If there Is no suchy, I.e., iIf X coincides with the set of the shortest
vectors of a unimodular lattick, then we get a different system of
linear equations by taking € X:

[1/2] _ 5
2i 2 (20 = DN([Jor]]"p)*| X .
) ¥+ (20 ) = =1,....[t/2]).

(0, 0) %4 (0, —a)2 = 2% = i,
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Spherical designs and lattices

In what follows, letX = —X c S™!(u) be a spherical-design
generating an integral lattice.

Suppose

If & € A*is minimal ina + A anda ¢ X, then we obtain a
consistency condition.

If there Is no suchy, I.e., iIf X coincides with the set of the shortest
vectors of a unimodular lattick, then we get a different system of
linear equations by taking € X:

[1/2] _ 5
2i 2 (20 = DN([Jor]]"p)*| X .
) ¥+ (20 ) = =1,....[t/2]).

which also gives a consistency condition.
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The unimodular case

If X coincides with the set of the shortest vectors of a unimadula
lattice A, then
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The unimodular case

If X coincides with the set of the shortest vectors of a unimadula
lattice A, then

(/2] : 2 \i
24 2 (27 — DN({|e]|*p)*| X | -
y 2 : : 1 . . L] t 2 [ ]

j=1
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The unimodular case

If X coincides with the set of the shortest vectors of a unimadula
lattice A, then

(/2] : 2 \i
24 2 (27 — DN({|e]|*p)*| X | -
y 2 : : 1 . . L] t 2 [ ]

j=1

* (thp)=(42) = X =L,
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The unimodular case

If X coincides with the set of the shortest vectors of a unimadula
lattice A, then

(/2] - 2 \i
.4 2 (21_ 1)!!(”@“ M) ‘X‘ :
y 2 : :1 e e o t2.
2w = ) iy b B

j=1

* (thp)=(42) = X =L,

16n(n+2) .

° (t,u)=(4,3) = |X|= " , In particular,n < 24,
— N
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The unimodular case

If X coincides with the set of the shortest vectors of a unimadula
lattice A, then

(/2] . A
.4 2 (21_ 1)!!(”@“ M) ‘X‘ :
y 2 : :1 e e o t2.
2w = ) iy b B

j=1

* (thp)=(42) = X =L,

16 2) . .
LGRS ), In particular,n < 24,
20 —n

90n(n + 2)(n + 4)
(n — 26)(n — 28)

* (tp)=43) = |X|=

° (t,u) =(6,4) = |X|= , n IS bounded.
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The unimodular case

If X coincides with the set of the shortest vectors of a unimadula
lattice A, then

(/2] . A
.2 % (21_ 1)!!(”@“ M) ‘X‘ :
y 2 : :1 e o o t2.
2w = ) iy b B

j=1

* (thp)=(42) = X =L,

16 2) . .
LGRS ), In particular,n < 24,
20 —n

90n(n + 2)(n +4)
(n — 26)(n — 28)
Moreover,|u/2] +1 < [t/2] < 10 andt < 10 = n is bounded.

* (tp)=43) = |X|=

° (t,u) =(6,4) = |X|= , n IS bounded.
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Binary analogue

Let C' C ¥ be the binary code generated by the incidence matrix of
self-orthogonat-(v, &, \) design.
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Binary analogue

Let C' C ¥ be the binary code generated by the incidence matrix of
self-orthogonat-(v, &, \) design.

Pickz € C* minimal inx + C, and assumé& = supp(x) is not a
block. Then
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Binary analogue

Let C' C ¥ be the binary code generated by the incidence matrix of
self-orthogonat-(v, &, \) design.
Pickz € C* minimal inx + C, and assumé& = supp(x) is not a

block. Then
N — (81 i
[k/4]

j=24,...2
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Binary analogue

Let C' C ¥ be the binary code generated by the incidence matrix of
self-orthogonat-(v, &, \) design.
Pickz € C* minimal inx + C, and assumé& = supp(x) is not a

block. Then
AV A -
[k/4]

j=24,...2

There arel: /4] unknowns{ equations.
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Binary analogue

Let C' C ¥ be the binary code generated by the incidence matrix of
self-orthogonat-(v, &, \) design.
Pickz € C* minimal inx + C, and assumé& = supp(x) is not a

block. Then
AV A -
[k/4]

j=2.4,...,2
There arel: /4] unknowns{ equations.

A consistency condition is derived when

t> [k/4] + 1.
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Binary analogue

In what follows, letC' C F} be the binary code generated by the
iIncidence matrix of a self-orthogon&lv, k£, \) design, where
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Binary analogue

In what follows, letC' C F} be the binary code generated by the
iIncidence matrix of a self-orthogon&lv, k£, \) design, where

If € C* has minimal weight inc + C' andS = supp(x) is not a
block, then we obtain a consistency condition.
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Binary analogue

In what follows, letC' C F} be the binary code generated by the
iIncidence matrix of a self-orthogon&lv, k£, \) design, where

If € C* has minimal weight inc + C' andS = supp(x) is not a
block, then we obtain a consistency condition.

If there Is no suchx, I.e., if the blocks are just the minimum weight
codewords of a self-dual code, then we get a different system of
linear equations by takin§ to be a block:
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Binary analogue

In what follows, letC' C F} be the binary code generated by the
iIncidence matrix of a self-orthogon&lv, k£, \) design, where

If € C* has minimal weight inc + C' andS = supp(x) is not a
block, then we obtain a consistency condition.

If there Is no suchx, I.e., if the blocks are just the minimum weight
codewords of a self-dual code, then we get a different system of
linear equations by takin§ to be a block:

S (e ()= (=

j=2.4,....2[k/4]
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Binary analogue

In what follows, letC' C F} be the binary code generated by the
iIncidence matrix of a self-orthogon&lv, k£, \) design, where

If € C* has minimal weight inc + C' andS = supp(x) is not a
block, then we obtain a consistency condition.

If there Is no suchx, I.e., if the blocks are just the minimum weight
codewords of a self-dual code, then we get a different system of
linear equations by takin§ to be a block:

(e () = () i

j=2.4,....2[k/4]

S=DB

Spherical designs and extremal lattices — p.



Binary analogue

In what follows, letC' C F} be the binary code generated by the
iIncidence matrix of a self-orthogon&lv, k£, \) design, where

If € C* has minimal weight inc + C' andS = supp(x) is not a
block, then we obtain a consistency condition.

If there Is no suchx, I.e., if the blocks are just the minimum weight
codewords of a self-dual code, then we get a different system of
linear equations by takin§ to be a block:

=, O Q) ( oo

j=2.4,....2[k/4]

which also gives a consistency condition.
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Binary analogue

If the set of blocks coincides with the set of minimal weighttors of
a self-dual code, then
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Binary analogue

If the set of blocks coincides with the set of minimal weighttors of
a self-dual code, then

j E\ _ (IS ,_
| Z (z)n]—i_(z)_(z))\z (1=1,...,1).
j=2,4,...,2[k /4]
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Binary analogue

If the set of blocks coincides with the set of minimal weighttors of
a self-dual code, then

j E\ _ (IS ,_
| Z (z)n]—i_(z)_(z))\z (t=1,...,1).
j=2,4,...,2[k /4]

§

(bR =(24) = A=,
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Binary analogue

If the set of blocks coincides with the set of minimal weighttors of
a self-dual code, then

. = ("N i=1,...,1).
EZWM6>W+<5><i>& (i=1,....1)

j=24,...2

6
- 10—0'
20

26—

o (tk)=(2,4) = A

o (t,k)=(2,6) = A
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Binary analogue

If the set of blocks coincides with the set of minimal weighttors of
a self-dual code, then

j E\ _ (IS ,_
| Z (z)n]—i_(z)_(z))\z (t=1,...,1).
j=2,4,...,2[k /4]

6
° (t,k)=(2,4 =
(7 ) ( ) ) — )\ lo_v’
20
(t,k) =(2,6) = )\_26—1)’
° (t,k)=(3,8) = A= 530 — v IS bounded.

v2 — 52U + 688
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Binary analogue

If the set of blocks coincides with the set of minimal weighttors of
a self-dual code, then

j E\ _ (IS ,_
| Z (z)n]—i_(z)_(z))\z (t=1,...,1).
j=2,4,...,2[k /4]

§
o (tk)=(2,4) = )= ,
(7) (?) lo_v
20
° (t.k)=(2,6) = \= ,
(?) (?) 26_U
336
° (t,k) = (3,8 A= IS bounded.
(t.k) = (3,8) = 112—5211%—688:?]I Hnee

* for eacht, k with t = [k/4] + 1, v is boundedOnly finitely many
(t, k,v)?
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