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Let X = (X, R) be an association scheme, R = {R;|0 <i < d}. Let Ay =1,..., A4
be the adjacency matrices of an association scheme. The Terwilliger algebra is by defi-
nition the subalgebra of End M,,(C) generated by the left multiplication by A; and the
Hadamard multiplication by A;, 0 <14 < d. Let e, (z,y € X) be matrix unit and take
the basis { E,y . } of End M,,(C), where E,y €. = €4y. Then the left multiplication by

A; is given by
Z Z ny,zmv

zEX (y,2)ER;

while the Hadamard multiplication by A; is given by

Z Ey:v,yx '

(yvx)eRi

It follows that the Terwilliger algebra is contained in the subalgebra of End M, (C)
spanned by E,; .., z,y,2 € X. Since

Eya:,zx Evmwu = 5acu5zv Eya:,wx )

we can formally redefine the Terwilliger algebra as a subalgebra of C[X x X x X| with
the multiplication
(ZE, Y, Z) (U, v, U)) = 5:811,521)(1:; Y, w)

Namely, by abuse of notation, we can write

Ai = Z Z ([L’;y,Z)-

2€X (y,2)eR;

If we define
Ei= Y (miy.y),
(l‘,y)ERi

then the Terwilliger algebra is the subalgebra T of C[X x X x X] generated by A,
Er, 0 <1 < d. First we list some relations among the generators of 7. Let J =

4 A, Ri(z) = {y € X|(x,y) € R;}. We denote by i’ the index determined by
Ry = {(x,y)|(y,z) € R;}. Asin the literature, pf; denote the size of the set R;(z)NR; (y),
where (z,y) € Ry.



d
Lemma 1 (i) Ag =) E} is the identity of T
=0

d

k=0

(iii) B; B = 6, B
(iv) E7A;Ey = > (w39, 2).
(z,y)ER;, (x,2)ERy
(y,2)ER;

vi) LETAe = > |Ri(y) N Rj(x) N Ry (2)|(x3y, 2).

z,y,2€X

(

(

(vil) A, EL A, = E3JE;.
d

(

d
(ix) LB =Y phEnd.

k=0
d
(x) BgAE; A = 65y Dy EGAE] .
=0
d
(xi) AEfALES =010 Y Pl B AUES.
=0

Proof. Direct calculation. O

Let T be the linear subspace of T spanned by EfA;E}, (0 <1i,j,k <d). Clearly, T
is generated by T} as an algebra since Ty contains A; and E} for all ¢, but in general, Tj
may be a proper subspace of T

Define the Hadamard product by

(259, 2) o (u; v, W) = JuyOyudzw (T Y, 2).

Lemma 2 (i) J is the identity with respect to the Hadamard product.
(i) Ajo (Ef(x;y,2)Ef) = Ef(Ajo (x;y,2))Er = (z;y, 2) if (x,y) € Ry, (x,2) € Ry,
(y,2) € Ry, and 0 otherwise.

d
1=0
(iv) Ty is closed under the Hadamard product.

Proof. Direct calculation. O

Lemma 3 The following are equivalent.
(i) Ao (BfAE;ALEY) € T,
(11) A, o (E;Ak/E]*AZ/El*) ey,
(iii) Apy o (EFAp EFAES) € To.



Proof. Any one of the above is equivalent to the condition: |R;(y) N R;j(x) N Ry (2)] is
constant independent of x,y, z with (z,y) € Ry, (x,2) € Ry, (y,2) € R,. O

Definition. An association scheme (X, R) is called triply regular if the size of the set
R;(z) N R;(y) N Ri(z) depends only on (4, j, k,l,m,n), where (z,y) € Ry, (x,2) € Ry,
(y,2) € R,.

Lemma 4 An association scheme (X, R) is triply reqular if and only if T = Ty.

Proof. By definition and Lemma 1 (vi), (X, R) is triply regular if and only if A;E} A, € Tp
for any 4, j, k. Thus, T' = Ty implies triple regularity. Conversely, suppose A;E} Ay € Tj
for any i,j,k. By Lemma 1 (ii), (iii), any word in A;, £ (0 < 4,5 < d) is a linear
combination of words, in which A;’s and E7’s appear alternately. Such a word with more
than one A;’s can be rewritten with less number of A;’s since A;E; Ay € Tp. By induction,
we can show that any word in A;, £ (0 <1i,7 <d) is a linear combination of EfA,E},
ErA;, AjE;, Aj, (0 <,k < d). Since Y7, E is the identity, all of these belong to Tp,
thus T'=1T,. O

Lemma 5 Let X be an association scheme of class 2. If AyEfA; € Tpy, then X s triply
reqular.

Proof. Since AgETfA; € Ty and JE{A;, € Ty by Lemma 1 (viii), we have A2 EfA; € T,
and similarly A, Ef Ay € Ty, hence Ay E7 Ay € T also holds. Since Ag = Ej + Ef + E3,
Lemma 1 (vii) implies A;E3 Ay € Tp for any i, k. Thus X is triply regular. O

Proposition 6 Let X' be a symmetric association scheme of class 2. Then X 1is triply
reqular if and only if R induces an association scheme on subconstituents of X .

Proof. Tt X is triply regular, then clearly R induces an association scheme on subcon-
stituents of X'. Suppose that R induces an association scheme on subconstituents of X.
This is equivalent to

EfA ETAET €Ty and EJAETAES € Th.
By Lemma 2 (iv) we have
Aso (ETALETALEY) € Ty and Ay o (E5AETALES) € Th.
By Lemma 3 we have
Ay o (E5ALETAEY) € Ty, Ago (E5AIETALEY) € Ty,

It follows from Lemma 2 (iii) that E3 A Ef A Ef € Ty, and similarly ETA ETAE; € Ty.
Now
AETAL = (Ej + Ef + E3) A ETA(ES + E + E3),

so we see that A; EfA; € Ty using Lemma 1 (x), (xi). The result follows from Lemma 5.
O



Suppose that there exists a spin model defined on the symmetric association scheme
X. This means that there exist complex numbers tg,tq,...,t; such that the function
w: X x X — C* defined by w(z,y) =t; when (x,y) € R;, satisfies the following.

(1) > wlz,y)w(z,y) " = 8,.|X], for z, 2 € X,

yeX

(2) > wla, z)w(z, bw(c,z)" = /| X|w(a, b)w(c,b) " w(c,a)™" for a,b,c € X.
zeX
We want to express the equation (2) in the Terwilliger algebra. Put

d

=0

d
W =/|X|> t;'E;.
=0
Lemma 7 The equation (2) is equivalent to WW*W = W*WW*.

Proof. We have

1
—WW*'W = > tit; 4 AE A,
| X| ik

= 3 3 it Ry(c) N Ria) N Ry (b)|(c; a, b)

i,j.k a,b,ceX

= Y ¥ > titj’ltk(c; a,b)

a,b,c€ X 1,5,k xeR;j(c)NR;(a)NR,/ (b)

= Z Zw(a,x)w(x,b)w(c,x)’l(c;a,b),

a,b,ceX zeX

1 I

| X| igk
= VIX]I Dt ! > (c;a,b)
i3,k (c,a)€ER;, (¢,b)ERy

(a,b)ER;

= | X| Z w(a, b)w(c,b) tw(c,a) " (c;a,b).

a,b,ceX
Thus the result follows. O

We give a simple proof of a result due to Jaeger.

Theorem 8 Let X' be symmetric association scheme of class 2, w: X x X — C* a spin
model, w(z,y) =t; if (z,y) € R;, and ty # ty. Then X is triply regular.



Proof. Since W*WW=* € Ty, Lemma 7 implies WW*W € T,. By definition, W =
toAg + t1A; + taAs is a linear combination of Ay, A; and J. By Lemma 1 (i), (viii), we
have AgW*W € Ty, JW*W € T,. Since t; # to, we obtain A;W*W € Ty. Similarly we
have A W*A; € Ty. Moreover, Lemma 1 (vii) implies Ay E§A; € To, so that we get

T AET A + A B AL € T
On the other hand,
AlEikAl + AlE;Al - A% - AIESAI S T().

Since t1 # t9, we obtain A; EfA; € Ty. The assertion follows from Lemma 5. O
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