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Abstract

We give a classification of singly-even self-dual binary codes of
length 32, by enumerating all neighbours of the known 85 doubly-
even self-dual binary codes of length 32. There are 3, 210 singly-even
self-dual binary codes of length 32 up to equivalence. This agrees in
number with the enumeration by Bilous and van Rees, who enumer-
ated these codes by a different method.

1 Preliminaries

We denote by F2 a finite field of two elements. A binary linear code of
length n is a linear subspace of Fn

2 . Since all codes considered in this note
are binary linear, we omit the adjectives “binary” and “linear.” Two codes
are said to be equivalent if one is obtained from the other by a permutation
of coordinates. The set of permutations which give equivalences of a code
C to itself forms a group called the automorphism group, and is denoted by
Aut(C). We define the standard inner product on Fn

2 by

u · v =
n∑

j=1

ujvj, (u, v ∈ Fn
2 ).

The dual C⊥ of a code C is defined by

C⊥ = {u ∈ Fn
2 | u · v = 0 for all v ∈ C},

and C is said to be self-dual if C = C⊥. The weight of a vector u ∈ Fn
2 is

defined by
wt(u) = #{j | 1 ≤ j ≤ n, uj ̸= 0}.
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and the minimum weight of a code C is defined by

min(C) = min{wt(u) | u ∈ C, u ̸= 0}.

If C is a self-dual code, then clearly wt(u) ≡ 0 (mod 2) holds for all
u ∈ C. A code C is called doubly-even if for all u ∈ C, wt(u) ≡ 0 (mod 4)
holds. A doubly-even self-dual code is also called a Type II code. A self-dual
code which is not doubly-even is called singly-even or Type I. A Type II code
of length n exists if and only if n ≡ 0 (mod 8).

Now we turn to the enumeration of self-dual codes. All Type II codes of
length up to 32 have been classified, and all Type I codes of length less than
32 have been classified, by Conway, Pless and Sloane [4]. The main result of
this note is the following theorem, which in particular fills the last entry in
Table 1.

Theorem 1. There are 731, 2402, 74, 3 Type I codes of length 32 with mini-
mum weight 2, 4, 6, 8, respectively, up to equivalence.

Table 1: The Number of Self-Dual Codes

n 2 4 6 8 10 12 1 16 18 20 22 24 26 28 30 32
II 1 2 9 85
I 1 1 1 1 2 3 4 5 9 16 25 46 103 261 731 3210

The first row indicates the lengths, the second row gives the number of
doubly-even self-dual (Type II) codes, and the third row gives the number
of singly-even self-dual (Type I) codes, both up to equivalence. Among the
Type I codes of length 32, only those codes with minimum weight 2 or 8 were
classified before. Type I codes of length 32 with minimum weight 2 are the
direct sums of self-dual codes of length 30 and the unique self-dual code of
length 2, hence there are 731 such codes. It is known that there are three
Type I codes of length 32 with minimum weight 8 (see [5]).

After our enumeration was completed, the author became aware of the
work of Bilous and van Rees [1] who also obtained Theorem 1 by a method
different from the one described in this note. The purpose of the present
note now, is to demonstrate the efficiency of our approach. Also, it should be
mentioned that our method of enumerating neighbours (see the next section
for a definition) has been applied successfully in finding new quasi-symmetric
2-(49, 9, 6) designs (see [6]).
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The total number of Type II codes of length n is known to be (see [7]):

n/2−2∏
j=0

(2j + 1).

A similar formula for the total number of self-dual codes of length n is known:

n/2−1∏
j=1

(2j + 1).

These formulas can be used to check that a classification of Type I codes is
complete for small lengths. In fact, suppose that we have a collection C of
Type I codes of length n in which all members are pairwise inequivalent. If
C satisfies ∑

C∈C

n!

# Aut(C)
=

n/2−1∏
j=1

(2j + 1) −
n/2−2∏
j=0

(2j + 1). (1)

then we can be sure that no other Type I codes of length n exist, in other
words, C is a complete set of representatives of equivalence classes of Type I
codes of length n.

2 Neighbours

Self-dual codes C1, C2 of length n are called neighbours to each other if

dim C1 ∩ C2 =
n

2
− 1

Note dim C1 = dim C2 = n
2

since C1 and C2 are self-dual. The vector in
Fn

2 whose entries are all 1 is called the all one vector and is denoted by 1.
Every self-dual code contains 1. Thus, a self-dual code C of length n has
2n/2−1 − 1 hyperplanes (subcodes of codimension 1 in C) containing 1. For
each such hyperplane H, dim H⊥/H = 2 holds. So there are three self-dual
codes (including C) lying between H and H⊥. Indeed, the following holds
(see [3]).

Lemma 1. Let n be a positive integer divisible by 8. Let D0 be a doubly-even
code of length n containing the all one vector, and suppose dim D0 = n/2−1.
Then there are exactly three self-dual codes containing D0, only one of which
is Type I.
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Therefore, a Type II code C of length n has 2n/2−1 −1 Type I neighbours
and 2n/2−1 − 1 Type II neighbours. All Type I codes arise in this way from a
Type II code and its hyperplane. Indeed, if C1 is a Type I code, then there
exists a unique doubly-even hyperplane H of C1. The two neighbours C ′, C ′′

of C1 such that
C1 ∩ C ′ = C1 ∩ C ′′ = H

are both Type II.
Thus we can use the classification of Type II codes of length 32 in order

to classify Type I codes of length 32. More precisely, we need to classify the
pairs (D,D0), where D is a Type II code of length 32, D0 is a hyperplane
of D. Note that D can be chosen to be one of the 85 representatives of
equivalence classes of Type II codes of length 32. Then D0 can be chosen
to be one of the representatives of orbits under Aut(D). Still, equivalent
codes may arise from more than one pairs (D,D0), hence equivalence testing
must be performed in order to classify Type I codes. We will describe how to
minimize the costly computation of equivalence testing in the next section.
We will see that the number of equivalence classes of Type I codes can be
found without performing any equivalence testing.

Let n be a positive integer divisible by 8, and let C denote the set of
Type I codes of length n. Let D denote the set of pairs (D,D0), where D is a
Type II code of length n, D0 a subcode of D of codimension 1 containing the
all one vector. For each (D,D0) ∈ D, Lemma 1 implies that there exists a
unique Type I code containing D0. This fact enables us to define a mapping
φ : D → C, where C = φ(D,D0) is defined to be the unique Type I code
containing D0. Every Type I code has a uniquely determined doubly-even
subcode of codimension 1. Hence Lemma 1 implies that φ is surjective and
|φ−1(C)| = 2 for all C ∈ C. Indeed, if D0 is the doubly-even subcode of
codimension 1 in C, then

φ−1(C) = {(D,D0), (D
′, D0)},

where D,D′ are the two Type II codes containing D0.
We now define three subsets of D as follows.

D1 = {(D,D0) ∈ D | Aut D0 ̸⊂ Aut D},
D2 = {(D,D0) ∈ D | D ̸∼= D′},
D3 = {(D,D0) ∈ D | Aut D0 ⊂ Aut D and D ∼= D′},

where, in the definition of D2 and D3, D′ denotes the unique Type II code
containing D0, different from D. Also, the symbol ∼= means the equivalence
of codes.
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Lemma 2. Suppose (D,D0) ∈ D, and let D′ denote the unique Type II code
containing D0, different from D. If (D,D0) ∈ D1, then D ∼= D′.

Proof. Since Aut D0 ̸⊂ Aut D, there exists an element σ ∈ Aut D0 such that
Dσ ̸= D. Then we must have Dσ = D′, and in particular, D ∼= D′.

Lemma 2 implies that D is the disjoint union D1 ∪ D2 ∪ D3. In fact one
can prove the following.

Lemma 3. We have

C = φ(D1) ∪ φ(D2) ∪ φ(D3) (disjoint).

Proof. Let C ∈ C, and suppose φ−1(C) = {(D,D0), (D
′, D0)}. If (D,D0) ∈

D1, then there exists an element σ ∈ Aut D0 such that Dσ ̸= D. This forces
Dσ = D′, hence σ /∈ Aut D′. Therefore, (D′, D0) ∈ D1. It is clear that
(D,D0) ∈ D2 implies (D′, D0) ∈ D2. Thus (D,D0) ∈ D3 forces (D′, D0) ∈
D3. Therefore, φ−1(C) is contained in one of D1,D2 or D3.

Let C̄ be the set of equivalence classes of Type I codes of length n. In
other words,

C = {[C] | C ∈ C},

where
[C] = {Cσ | σ ∈ Sn}

is the Sn-orbit containing C. Then C̄ is a partition of C. Likewise, Sn acts
on D, and D is partitioned into Sn-orbits. We denote by [D,D0] the Sn-orbit
containing (D,D0) ∈ D, and set

D̄ = {[D,D0] | (D,D0) ∈ D}.

Then φ induces the mapping φ̄ : D̄ → C̄ defined by φ̄([D,D0]) = [φ(D,D0)].
It is clear that each of the subsets D1,D2 and D3 is invariant under the

action of Sn. Thus
D̄ = D̄1 ∪ D̄2 ∪ D̄3,

where
D̄i = {[D,D0] | (D,D0) ∈ Di} (i = 1, 2, 3).

The following is an immediate consequence of Lemma 3.

Lemma 4. We have

C̄ = φ̄(D̄1) ∪ φ̄(D̄2) ∪ φ̄(D̄3) (disjoint).
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Moreover, we have the following.

Lemma 5. For any C ∈ C,

|φ̄−1([C])| =

{
1 if [C] ∈ φ̄(D̄1),

2 if [C] ∈ φ̄(D̄2) ∪ φ̄(D̄3).

Proof. If φ−1(C) = {(D,D0), (D
′, D0)}, then φ̄−1([C]) = {[D,D0], [D

′, D0]}.
Note that [D,D0] = [D′, D0] if and only if there exists an element σ ∈ Sn

such taht Dσ = D′ and Dσ
0 = D0. This is equivalent to Aut D0 ̸⊂ Aut D, or

to C ∈ φ(D1).

3 Enumeration

In this section, we describe how we enumerated the equivalence classes of
Type I codes of length 32. As we have shown in the previous section, the set
C̄ of equivalence classes of Type I codes can be constructed from the set D̄
via the maping φ̄. The enumeration of the elements of D̄ can be done easily
by Magma [2] using the known classification of Type II codes of length 32
available in an electronic form [8].

Every element of D̄ is of the form [D,D0], where D is one of the 85
representatives for the equivalence classes of Type II codes of length 32.
Then, for a fixed Type II code D, we need to enumerate all elements of D̄ of
the form [D,D0]. Note that for two subcodes D0, D

′
0 of codimension 1 in D,

[D,D0] = [D,D′
0] holds if and only if there exists an element σ ∈ Aut D such

that Dσ
0 = D′

0. This means that we need to decompose the set of codimension
1 subcodes of D containing 1 into Aut D-orbits. Equivalently, we wish to
decompose the set of even codes of dimension n/2 + 1 containing D into
Aut D-orbits. This set corresponds bijectively to the set of nonzero elements
of P/D, where P denotes the even weight code 〈1〉⊥. Since Aut D leaves
P invariant, and D is an Aut D-submodule of P , the matrix representation
of Aut D on the quotient module P/D can be constructed by Magma. We
give here explicitly a magma program to enumerate a set of representatives
(D,D0) for D̄ when D is the extended quadratic residue code of length 32.

> D:=ExtendCode(QRCode(GF(2),31));

> A:=AutomorphismGroup(D);

> M:=PermutationModule(A,GF(2));

> E:=EvenWeightCode(32);

> EM,inc:=sub< M | VectorSpace(E) >;

> DM:=sub< M | VectorSpace(D) >;
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> N,proj:=quo< EM | DM >;

> orbits:=Orbits(MatrixGroup(N));

> reps:={ Rep(o) : o in orbits } diff { VectorSpace(N)!0 };

> #reps;

15

This shows that, if we denote by XQR32 the extended quadratic residue
code of length 32, the set

{[D,D0] ∈ D̄ | D ∼= XQR32}

has 15 elements. One can execute a similar program for each of the 85 Type II
codes.

Our next task is to decompose the set D̄ into D̄1, D̄2 and D̄3. This can
also be achieved easily by Magma. Let [D,D0] ∈ D̄. We first check if Aut D0

is a subgroup of Aut D. If not, we have [D,D0] ∈ D̄1 by the definition. If
Aut D0 ⊂ Aut D, then we compute a set of representatives for D⊥

0 /D0. It
follows from Lemma 1 that there exists a unique element v among the four
representatives, satisfying v /∈ D and wt(v) ≡ 0 (mod 4). Then D′ = 〈D0, v〉
is a Type II code. If D ∼= D′, then we conclude [D,D0] ∈ D̄3, otherwise we
have [D,D0] ∈ D̄2. This can be done if we use Magma to test equivalence
of the two codes D and D′. Instead, we can also use known properties of
Type II codes in order to distinguish inequivalent Type II codes. In fact, the
equivalence classes of Type II codes of length 32 can be uniquely identifiable
by the order of automorphism group and the number of codewords of weight
4. Thus, if we compute the order of the automorphism group and the number
of codewords of weight 4 for D,D′, we can decide whether D is equivalent to
D′ or not.

Let Ci be the i-th Type II code of length 32 in the classification given in
[4]. In Table 2, we list the sizes of the sets

|{[Ci, D0] ∈ D̄j | min φ(Ci, D0) = k}| (2)

in its i-th row, j-th column. The numbers are given as triples for D̄1, corre-
sponding to the values k = 2, 4, 6. For D̄2, they are given for k = 4, 6, 8. For
D̄3, they are given for k = 4 only. Note that the minimum weight of a Type I
code of length 32 can be 2, 4, 6 or 8. A Type I code with minimum weight
2 exists only in φ(D1), and a Type I code with minimum weight 8 exists
only in φ(D2). Indeed, if a Type I code C has minimum weight 2, then the
transposition τ switching the two coordinates in the support of an element of
weight 2 is an automorphism of C. It is easy to see that τ exchanges the two
doubly-even neighbors D,D′ of C. Thus Aut D0 = Aut C ̸⊂ Aut D, where
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D0 = D ∩ C is the doubly-even subcode of C. Hence (D,D0) ∈ D1, and
C = φ(D,D0) ∈ φ(D1). If a Type I code C has minimum weight 8, then it
is shown in [5] that C has a doubly-even neighbor D with minimum weight
8, and that the shadow (C ∩ D)⊥ − C has minimum weight 4. This implies
that the other doubly-even neighbor D′ of C has minimum weight 4, hence
D ̸∼= D′. Thus (D,D0) ∈ D2, and C = φ(D,D0) ∈ φ(D2).

We did not find any Type I code with minimum weight 6 in φ(D3). Prob-
ably there is a reason for that.

By Lemma 4, we can read off the number of equivalence classes of Type I
codes from Table 2. Indeed, by Lemma 4, each equivalence class in φ̄(D̄2) ∪
φ̄(D̄3) is counted twice in Table 2. Thus the total number of equivalence
classes of Type I codes of length 32 with minimum weight 4 is

480 +
3824

2
+

20

2
= 2402,

while the total number of equivalence classes of Type I codes of length 32
with minimum weight 6 is

17 +
114

2
= 74.

Therefore, we have established Theorem 1.
We note that Type I codes of length 32 with minimum weight 8 have

already been classified in [5]. Also, Type I codes of length 32 with minimum
weight 2 correspond bijectively to self-dual codes of length 30, and the num-
ber 731 has been given in [4]. Type I codes in φ̄(D̄2) can be found without
repetition if we observe that the restriction of φ̄ to the set

84∪
i=1

{[Ci, D0] ∈ D̄2 | [Ci, D0] = [Cj, D
′
0] for some j > i}

is injective. Type I codes in φ̄(D̄3) are represented by two elements of D̄3,
so we need to use Magma to classify them into equivalent pairs. We do not
give here explicit description of the Type I codes we have classified, but we
note that we have checked the mass formula (1).
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Table 2: Type I neighbours

D̄1 D̄2 D̄3 D̄1 D̄2 D̄3

min 2 4 6 4 6 8 6 min 2 4 6 4 6 8 6
C1 2 0 0 3 0 0 0 C44 4 0 0 11 0 0 0
C2 4 0 0 8 0 0 0 C45 6 3 0 21 0 0 0
C3 5 0 0 12 0 0 0 C46 13 6 0 56 0 0 0
C4 5 0 0 12 0 0 0 C47 12 9 0 46 0 0 0
C5 3 0 0 9 0 0 0 C48 7 3 0 25 0 0 0
C6 5 0 0 14 0 0 0 C49 6 2 0 13 0 0 0
C7 6 1 0 20 0 0 0 C50 6 2 0 30 0 0 0
C8 11 2 0 26 0 0 0 C51 6 0 0 27 0 0 0
C9 6 1 0 20 0 0 0 C52 13 5 0 71 0 0 0
C10 5 0 0 17 0 0 0 C53 8 2 0 37 0 0 0
C11 6 0 0 22 0 0 0 C54 12 11 0 81 0 0 0
C12 11 3 0 41 0 0 0 C55 15 17 0 106 0 0 0
C13 9 1 0 29 0 0 0 C56 16 13 0 113 0 0 0
C14 9 2 0 31 0 0 0 C57 13 8 0 69 0 0 0
C15 5 2 0 18 0 0 0 C58 18 17 0 126 0 0 0
C16 5 0 0 14 0 0 0 C59 14 12 0 95 0 0 0
C17 7 1 0 25 0 0 0 C60 6 3 0 24 0 0 0
C18 8 2 0 23 0 0 0 C61 19 20 0 152 0 0 2
C19 17 6 0 62 0 0 0 C62 21 29 0 162 0 0 0
C20 15 4 0 65 0 0 0 C63 18 23 0 142 0 0 0
C21 16 8 0 70 0 0 0 C64 12 15 0 77 0 0 0
C22 9 4 0 31 0 0 0 C65 14 15 0 67 0 0 0
C23 4 1 0 8 0 0 0 C66 6 4 0 22 0 0 0
C24 2 0 0 6 0 0 0 C67 2 0 0 9 0 1 0
C25 5 1 0 21 0 0 0 C68 3 0 0 18 0 1 0
C26 5 1 0 17 0 0 0 C69 2 1 0 13 0 1 0
C27 4 1 0 12 0 0 0 C70 7 4 0 53 1 0 0
C28 3 0 0 4 0 0 0 C71 9 13 0 73 1 0 0
C29 3 0 0 16 0 0 0 C72 10 8 0 66 1 0 2
C30 4 0 0 22 0 0 0 C73 6 14 0 70 1 0 0
C31 6 2 0 34 0 0 0 C74 7 3 0 35 4 0 0
C32 10 2 0 31 0 0 0 C75 14 27 0 140 4 0 6
C33 14 5 0 62 0 0 0 C76 13 27 0 115 5 0 4
C34 8 3 0 44 0 0 0 C77 6 4 1 25 7 0 0
C35 18 8 0 77 0 0 0 C78 8 17 1 66 10 0 0
C36 7 1 0 37 0 0 0 C79 8 9 1 54 8 0 0
C37 22 12 0 118 0 0 2 C80 8 13 4 44 16 0 4
C38 20 13 0 122 0 0 0 C81 1 0 3 0 11 0 0
C39 17 12 0 101 0 0 0 C82 1 0 0 0 3 1 0
C40 7 5 0 42 0 0 0 C83 2 0 0 0 7 1 0
C41 12 9 0 68 0 0 0 C84 2 0 2 0 15 1 0
C42 9 6 0 40 0 0 0 C85 3 0 5 0 20 0 0
C43 5 2 0 16 0 0 0 total 731 480 17 3824 114 6 20

10


