2008年7月11日

群

集合 G に演算 $*: G \times G \to G$ が定義されていて、次の性質を満たすとき、(G,*) は群であるという。

- (1) $\forall a, b, c \in G, (a*b)*c = a*(b*c)$ (結合法則)
- (2) $\exists e \in G, \forall a \in G, a * e = e * a = a$ (単位元の存在)
- (3) $\forall a \in G, \exists b \in G, a * b = b * a = e$ (逆元の存在)

上のb は a^{-1} または-a と書くことがある。

二つの群 $(G_1,*_1), (G_2,*_2)$ に対して、全単射 $f:G_1\to G_2$ が存在して $\forall x,y\in G_1,$ $f(x*_1y)=f(x)*_2f(y)$ が成り立つとき、 G_1 と G_2 は同型であるといい、 $G_1\cong G_2$ と書く。

群 G に対して、 $\exists a \in G, G = \{a^n \mid n \in \mathbf{Z}\}$ が成り立つとき、G は巡回群であるという。無限巡回群は \mathbf{Z} と同型である。位数 m の巡回群は $\mathbf{Z}/m\mathbf{Z}$ と同型である。

G を群とし、その単位元を 1 と書くことにする。 $x \in G$ に対し、

$$\min\{n \mid n \in \mathbf{N}, \ x^n = 1\}$$

を、元 x の位数という。ただし $\{n\mid n\in {\bf N},\; x^n=1\}=\emptyset$ のときは位数無限という。 K が体ならば、 K^{\times} は群になるので、すでに定義済みの $x\in K^{\times}$ の位数と上の定義は一致する。

群 G が有限集合のとき有限群という。 K^{\times} の場合と全く同様にして、 $x \in G$ の位数は |G| の約数であることがわかる。

 $n \in \mathbb{N}$ とし、n 個の元からなる集合(例えば $X = \{1, 2, \dots, n\}$)からそれ自身への全単射全体のなす集合をn 次対称群といい、 S_n で表す。 S_n は写像の合成に関して群をなす。単位元は恒等写像、逆元は逆写像である。恒等写像というのは、

$$id(1) = 1, \quad id(2) = 2, \dots, id(n) = n$$

で定義される X から X への写像である。一般には $|S_n|=n!$ である。例えば、n=3, $X=\{1,2,3\}$ とすると、

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$,
 $g(1) = 2$, $g(2) = 1$, $g(3) = 3$

などが S_3 の元である。これらは順列と考えても良く、省略してそれぞれ $231,\,213$ と書くこともできる。写像の合成 $f\circ g$ とは $f\circ g(x)=f(g(x))$ によって定義される写像である。上記の f,g に対しては

$$f \circ g(1) = 3$$
, $f \circ g(2) = 2$, $f \circ g(3) = 1$

となる。一般に、f,g が全単射ならば、 $f \circ g$ も全単射である。したがって \circ は S_n に おける演算となり、この演算に関して S_n は群になる。

 S_n は線形代数学で習ったはず: $A=(a_{ij})$ を n 次正方行列とすると

$$\det A = \sum_{f \in S_n} \operatorname{sgn}(f) \prod_{i=1}^n a_{i,f(i)}$$

と表される。ここで

$$\operatorname{sgn}(f) = (-1)^{|\{(i,j)|i \in X, j \in X, i < j, f(i) > f(j)\}|}.$$

K を体とすると、K の元を成分とする n 次正方行列に、通常の行列の積を定義することができる。K が体であることから、K の元を成分とする行列の積は結合法則をみたし、K の単位元、零元から単位行列を作ることができる。また、K が体であることから、行列式の定義、それによる逆行列の公式が成り立つ。逆行列を持つ行列を正則行列といい、K の元を成分とする n 次正則行列全体の集合を GL(n,K) と書く。GL(n,K) は行列の積に関して群になる。

例えば、 $n=2, K=\mathbf{Z}/2\mathbf{Z}$ とすると

$$GL(2, \mathbf{Z}/2\mathbf{Z}) = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}.$$

 S_3 も $GL(2, \mathbf{Z}/2\mathbf{Z})$ も位数 6 の元を持たないので、 $\mathbf{Z}/6\mathbf{Z}$ とは同型でない。

前回までに講義済みの内容

一般に、|K|=q である体 K には、位数 q-1 の元の存在が保証されているので、そのような元のひとつを α とすると、 $K^{ imes}$ の乗積表は、次のようになる。

×	1	α	α^2	 α^{q-1}
1	1	α	α^2	 α^{q-1}
α	α	α^2	α^3	 1
α^2	α^2	α^3	α^4	 α
:	:	:	:	:
α^{q-2}	α^{q-2}	1	α	 α^{q-3}

指数だけ書けば

+	0	1	2	 q-1
0	0	1	2	 q-1
1	1	2	3	 0
2	2	3	4	 1
:	:	:	:	:
q-2	q-2	0	1	 q-3