1. \mathbb{Z} 上の以下の関係 R が次の性質を持つかどうか決定せよ。

R	反射律	対称律	推移律
$\{(a,b) \mid a \ge b\}$	0	×	0
$\{(a,b) \mid a-b $ は偶数 $\}$	0	0	0
$\{(a,b) \mid ab $ は偶数 $\}$	×	0	×
$ \{(a,b) \mid \exists m \in \mathbb{Z}, \ am = b \} $	0	×	0
$\{(a,b) \mid ab = 1\}$	×	0	0
$\{(a,b) \mid \sqrt{ab} $ は整数 $\}$	0	0	×

2.

$$X = \{(a, b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0\}$$

とおき、

$$R = \{((a,b),(c,d)) \mid ((a,b),(c,d)) \in X \times X, \ ad = bc\}$$

とおくと、R は X 上の同値関係になることを示せ。

 $(a,b) \in X$ とすると、ab = ba より $((a,b),(a,b)) \in R$, よって反射律が成り立つ。 $((a,b),(c,d)) \in R$ とすると ad = bc より cb = da だから $((c,d),(a,b)) \in R$, よって対称律が成り立つ。

 $((a,b),(c,d)) \in R, ((c,d),(e,f)) \in R$ とすると ad = bc, cf = de だから

$$(ad)f = (bc)f$$
$$= b(cf)$$
$$= b(de)$$

となる。 $(c,d) \in X$ より $d \neq 0$ であるから、af = be を得るので、 $((a,b),(e,f)) \in R$, よって推移律が成り立つ。