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We assume the reader is familiar with linear algebra, for example, finite-dimensional real
vector spaces, the standard inner product, subspaces, direct sums, the matrix representation
of a linear transformation.

Let ↵ 2 R2 be a nonzero vector. The set of vectors orthogonal to ↵ form a line L, and
R2

= R↵� L holds. Given � 2 R2 can be expressed as

� = c↵ + µ for some c 2 R and µ 2 L. (1)

Since (µ,↵) = 0, we have

c =
(c↵ + µ,↵)

(↵,↵)

=

(�,↵)

(↵,↵)
(by (1)).

The reflection of � with respect to the line L is obtained by negating the h↵i-component of
� in (1), that is,

�c↵ + µ = �� 2c↵

= �� 2(�,↵)

(↵,↵)
↵.

Let s↵ : R2 ! R2 denote the mapping defined by the above formula, that is,

s↵(�) = �� 2(�,↵)

(↵,↵)
↵ (� 2 R2

). (2)

It is clear that s↵ is a linear transformation of R2. This means that there exists a 2 ⇥ 2

matrix S↵ such that
s↵(�) = S↵� (� 2 R2

). (3)

To find S↵, recall that L is the line orthogonal to ↵. Let

µ =


cos ✓
sin ✓

�

be a vector of length 1 in L. The vector

⌫ =


� sin ✓
cos ✓

�

is orthogonal to µ, hence in R↵. This implies that

s↵(µ) = µ,

s↵(⌫) = �⌫.
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Thus
S↵

⇥
µ ⌫

⇤
=

⇥
µ �⌫

⇤
,

which implies

S↵ =

⇥
µ �⌫

⇤ ⇥
µ ⌫

⇤�1

=


cos ✓ sin ✓
sin ✓ � cos ✓

� 
cos ✓ � sin ✓
sin ✓ cos ✓

��1

=


cos ✓ sin ✓
sin ✓ � cos ✓

� 
cos ✓ sin ✓
� sin ✓ cos ✓

�

=


cos

2 ✓ � sin

2 ✓ 2 sin ✓ cos ✓
2 sin ✓ cos ✓ �(cos

2 ✓ � sin

2
)

�

=


cos 2✓ sin 2✓
sin 2✓ � cos 2✓

�
.

This is the matrix representation of a reflection on the plane R2.
We next consider the composition of two reflections. Let s↵ and S↵ be as before, and

let s� be another reflection, with matrix representation

S� =


cos 2' sin 2'
sin 2' � cos 2'

�
.

Then

S↵S� =


cos 2✓ sin 2✓
sin 2✓ � cos 2✓

� 
cos 2' sin 2'
sin 2' � cos 2'

�

=


cos 2(✓ � ') � sin 2(✓ � ')
sin 2(✓ � ') cos 2(✓ � ')

�

=


cos 2(✓ � ') cos(2(✓ � ') + ⇡

2 )

sin 2(✓ � ') sin(2(✓ � ') + ⇡
2 )

�
.

This matrix maps the standard basis vector

1

0

�
=


cos 0

sin 0

�
,


0

1

�
=


cos

⇡
2

sin

⇡
2

�

to 
cos 2(✓ � ')
sin 2(✓ � ')

�
,


cos(2(✓ � ') + ⇡

2 )

sin(2(✓ � ') + ⇡
2 )

�
,

meaning that both vectors are rotated 2(✓ � '). Therefore, the product of two reflection is
a rotation.

We are interested in the case where the resulting rotation is of finite order, that is,
2(✓ � ') is a rational multiple of 2⇡. For brevity, write s = s↵, t = s� and id = 1. In this
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case, there exists a positive integer m such that (st)m = 1. We may assume s 6= t, so that
st 6= 1. We may choose minimal such m, so that

st, (st)2, . . . , (st)m�1 6= 1.

Writing r = st, this implies

1, r, r2, . . . , rm�1 are pairwise distinct. (4)

We aim to determine the set hs, ti of all linear transformations expressible as a product of
s, t. We have already seen that this set contains at least m distinct elements (4). Since
s2 = t2 = 1, possible product of s, t are one of the following four forms:

stst · · · st, (5)
stst · · · sts, (6)
tsts · · · ts, (7)
tsts · · · tst. (8)

Products of the form (5) are precisely described in (4). Products of the form (6) are

s, rs, r2s, . . . , rm�1s, (9)

and these are distinct by (4). Since ts = t�1s�1
= (st)�1

= r�1, products of the form (7)
are nothing but those in (4). Finally, since rt = s, products of the form (8) are then those in
(9). Therefore, hs, ti consists of 2m elements described in (4) and (9). To show that these
2m elements are distinct, it suffices to show that there is no common element in (4) and
(9), which follows immediately from the fact that det r = 1 and det s = �1.

It is important to note that this last part of reasoning, except the distinctness, follows
only from the transformation rule

s2 = t2 = 1, (st)m = 1. (10)

Setting r = st, we have rm = 1 and srs = r�1. Written in terms of r and s, we can also
say that the determination of all elements in hs, ti follows only from the transformation rule

s2 = rm = 1, sr = r�1s. (11)

Indeed, one can always rewrite sr to rm�1s, so every element in hs, ri is of the form rksj

with 0  k < m and j 2 {0, 1}.
In the next lecture, we will discuss a rigorous way of dealing with words in formal

symbol subject to relations such as (10) and (11). In addition to this formal aspect, we will
discuss explicit realizations of these symbols as linear transformation.

Definition 1. A linear transformation s : Rn ! Rn is called a reflection if there exists a
nonzero vector ↵ such that s(↵) = �↵ and s(h) = h for all h 2 (R↵)?.
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Note that, since Rn
= R↵ � (R↵)?, the linear transformation is determined uniquely

by the conditions s(↵) = �↵ and s(h) = h for all h 2 (R↵)?, so we denote this reflection
by s↵. Moreover, any nonzero scalar multiple of ↵ defines the same reflection, that is,
s↵ = sc↵ for any c 2 R with c 6= 0.

Lemma 2. Let s : Rn ! Rn
be a reflection. Then the matrix representation S of s is

diagonalizable by an orthogonal matrix:

P�1SP =

2

6664

�1

1

.

.

.

1

3

7775

for some orthogonal matrix P . Conversely, if the matrix representation of s is of this form

for some orthogonal matrix P , then s is a reflection.

Proof. Let s = s↵. We may assume without loss of generality (↵,↵) = 1. Let �2, . . . , �n

be an orthonormal basis of (R↵)?. Then ↵, �2, . . . , �n is an orthonormal basis of Rn. Let

P =

⇥
↵ �2 · · · �n

⇤
.

Then P is an orthogonal matrix, and

SP = P

2

6664

�1

1

. . .
1

3

7775
.

To prove the converse, let ↵ be the first column of P . Then clearly s(↵) = �↵ and
s(h) = h for any h 2 (R↵)?. Thus s = s↵.
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